【題目】如圖,平行四邊形ABCD中,AF、CE分別是∠BAD和∠BCD的角平分線,根據(jù)現(xiàn)有的圖形,請?zhí)砑右粋條件,使四邊形AECF為菱形,則添加的一個條件可以是__________.(只需寫出一個即可,圖中不能再添加別的“點”和“線”)
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,過點A作AE⊥BC,垂足為E,連接DE,F(xiàn)為線段DE上一點,且∠AFE=∠B.若AB=8,AD=6 ,AF=4 ,則AE的長為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知如圖為一幾何體的三視圖:主視圖和左視圖都是長方形,俯視圖是等邊三角形
(1)寫出這個幾何體的名稱;
(2)若主視圖的高為10cm,俯視圖中三角形的邊長為4cm,求這個幾何體的側(cè)面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,AB=CD,對角線AC,BD相交于點O,AE⊥BD于點E,CF⊥BD于點F,連接AF,CE,若DE=BF,則下列結(jié)論:①CF=AE;②OE=OF;③四邊形ABCD是平行四邊形;④圖中共有四對全等三角形.其中正確結(jié)論的個數(shù)是
A.4 B.3 C.2 D.1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,⊙A與y軸相切于原點O,平行于x軸的直線交⊙A于M、M兩點,若點M的坐標(biāo)是(-4,-2),則點N的坐標(biāo)為( )
A.(-1,-2)
B.(1,2)
C.(-1.5,-2)
D.(1.5,-2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】應(yīng)用我們學(xué)過的數(shù)學(xué)知識,解決下列問題:
(1)如圖①,從教學(xué)樓到圖書館,總有少數(shù)同學(xué)不走人行道而橫穿草坪,解釋這一不文明現(xiàn)象用到的基本事實是__________.
(2)如圖②,我們學(xué)過用直尺和三角尺畫平行線的方法,如圖所示,直線根據(jù)的基本事實是__________.
(3)如圖③,經(jīng)過刨平的木板上的兩個點,能彈出一條筆直的墨線,而且只能彈出一條墨線,解釋這一實際應(yīng)用的基本事實是___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD和四邊形ECGF都是正方形,點C、D、E在一條直線上,點B、C、G在一條直線上.
(1)寫出表示陰影部分面積的表達(dá)式(結(jié)果要求化簡);
(2)當(dāng)求陰影面積的面積
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點O為直線AB上一點,過點O作射線OC,使∠BOC=135°,將一個含45°角的直角三角尺的一個頂點放在點O處,斜邊OM與直線AB重合,另外兩條直角邊都在直線AB的下方.
(1)將圖1中的三角尺繞著點O逆時針旋轉(zhuǎn)90°,如圖2所示,此時∠BOM=_____;在圖2中,OM是否平分∠CON?請說明理由;
(2)緊接著將圖2中的三角板繞點O逆時針繼續(xù)旋轉(zhuǎn)到圖3的位置所示,使得ON在∠AOC的內(nèi)部,請?zhí)骄浚骸?/span>AOM與∠CON之間的數(shù)量關(guān)系,并說明理由;
(3)將圖1中的三角板繞點O按每秒5°的速度沿逆時針方向旋轉(zhuǎn)一周,在旋轉(zhuǎn)的過程中,第t秒時,直線ON恰好平分銳角∠AOC,則t的值為_____(直接寫出結(jié)果).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(數(shù)學(xué)閱讀)
如圖1,在△ABC中,AB=AC,點P為邊BC上的任意一點,過點P作PD⊥AB,PE⊥AC,垂足分別為D,E,過點C作CF⊥AB,垂足為F,求證:PD+PE=CF.
小堯的證明思路是:如圖2,連接AP,由△ABP與△ACP面積之和等于△ABC的面積可以證得:PD+PE=CF.
(推廣延伸)
如圖3,當(dāng)點P在BC延長線上時,其余條件不變,請運用上述解答中所積累的經(jīng)驗和方法,猜想PD,PE與CF的數(shù)量關(guān)系,并證明.
(解決問題)
如圖4,在平面直角坐標(biāo)系中有兩條直線l1:y=-x+3,l2:y=3x+3,l1,l2與x軸的交點分別為A,B.
(1)兩條直線的交點C的坐標(biāo)為 ;
(2)說明△ABC是等腰三角形;
(3)若l2上的一點M到l1的距離是1,運用上面的結(jié)論,求點M的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com