【題目】如圖,在△ABC中,∠C=90°,CDAB,垂足為D,AC=20,BC=15.動點PA開始,以每秒2個單位長的速度沿AB方向向終點B運動,過點P分別作AC、BC邊的垂線,垂足為E、F.

(1)ABCD的長;

(2)當(dāng)矩形PECF的面積最大時,求點P運動的時間t;

(3)以點C為圓心,r為半徑畫圓,若圓C與斜邊AB有且只有一個公共點時,求r的取值范圍.

【答案】125,12;(26.25;(3r=1215r≤20.

【解析】

試題(1)在Rt△ABC中,先利用勾股定理求出AB的長,然后由面積關(guān)系求出CD的長;

2)由相似關(guān)系可以求出PE、CEt的關(guān)系,矩形PECF的面積最大,求點P運動的時間t;

3)當(dāng)圓與AB相切時,r=12,當(dāng)圓與AB相交且只有一個交點時,15r≤20.

試題解析:(1)在Rt△ABC中,AC=20BC=15

2∵△APE∽△ABC,

,即

同理可求:

設(shè)矩形PECF的面積為S,S="1.2t(20-1.6t)" ,當(dāng)t=6.25時,S有最大值.

3)當(dāng)圓與AB相切時,r=12,當(dāng)圓與AB相交且只有一個交點時,15r≤20.

考點: 1.勾股定理;2.二次函數(shù);3.直線與圓的位置關(guān)系.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】①對角線互相垂直且相等的平行四邊形是正方形;

②平行四邊形、矩形、等邊三角形、正方形既是中心對稱圖形,也是軸對稱圖形;

③旋轉(zhuǎn)和平移都不改變圖形的形狀和大小;

④底角是45°的等腰梯形,高是h,則腰長是h;

⑤一組對邊平行,另一組對邊相等的四邊形是平行四邊形.

以上正確的命題是(

A. ①②③④ B. ①②④ C. ①②③ D. ①③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,為等邊三角形,,上一動點,以為邊,如圖所示作等邊三角形,交于點,連接.

(1)求證:

(2)若長為,長為,試求出的函數(shù)關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a≠0,a、b、c為常數(shù))的圖象如圖,則方程ax2+bx+c=m有實數(shù)根的條件是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,小明在樓AB頂部的點A處測得樓前一棵樹CD的頂端C的俯角為37°,已知樓AB高為18m,樓與樹的水平距離BD8.5m,則樹CD的高約為________m(精確到0.1m).(參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有四張卡片(背面完全相同),分別寫有數(shù)字1、2、﹣1﹣2,把它們背面朝上洗勻后,甲同學(xué)抽取一張記下這個數(shù)字后放回洗勻,乙同學(xué)再從中抽出一張,記下這個數(shù)字,用字母b、c分別表示甲、乙兩同學(xué)抽出的數(shù)字.

1)用列表法求關(guān)于x的方程x2+bx+c=0有實數(shù)解的概率;

2)求(1)中方程有兩個相等實數(shù)解的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】袋子中裝有3個帶號碼的球,球號分別是2,3,5,這些球除號碼不同外其他均相同.

(1)從袋中隨機摸出一個球,求恰好是3號球的概率;

(2)從袋中隨機摸出一個球,再從剩下的球中隨機摸出一個球,用樹形圖列出所有可能出現(xiàn)的結(jié)果,并求兩次摸出球的號碼之和為5的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某班同學(xué)上學(xué)期全部參加了捐款活動,捐款情況如下統(tǒng)計表:

金額(元)

5

10

15

20

25

30

人數(shù)(人)

8

12

10

6

2

2

(1)求該班學(xué)生捐款額的平均數(shù)和中位數(shù);

(2)試問捐款額多于15元的學(xué)生數(shù)是全班人數(shù)的百分之幾?

(3)已知這筆捐款是按3:5:4的比例分別捐給災(zāi)區(qū)民眾、重病學(xué)生、孤老病者三種被資助的對象,問該班捐給重病學(xué)生是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1為坐標原點,矩形的頂點,,將矩形繞點按順時針方向旋轉(zhuǎn)一定的角度得到矩形,此時邊、直線分別與直線交于點、

1)連接,在旋轉(zhuǎn)過程中,當(dāng)時,求點坐標.

2)連接,當(dāng)時,若為線段中點,求的面積.

3)如圖2,連接,以為斜邊向上作等腰直角,請直接寫出在旋轉(zhuǎn)過程中的最小值.

查看答案和解析>>

同步練習(xí)冊答案