【題目】如圖,2×2網(wǎng)格(每個(gè)小正方形的邊長為1)中有A,B,C,D,E,F,G,H,O九個(gè)格點(diǎn).拋物線l的解析式為(n為整數(shù)).若l經(jīng)過這九個(gè)格點(diǎn)中的三個(gè),則滿足這樣條件的拋物線條數(shù)為_________條
【答案】8
【解析】
根據(jù)題意,分別討論當(dāng)n是奇數(shù)或偶數(shù)時(shí),拋物線的情況,即可完成.
當(dāng)n為奇數(shù)時(shí),拋物線開口向下,如圖1,將點(diǎn)E、H、C的坐標(biāo)代入拋物線解析式、判斷拋物線經(jīng)過這三點(diǎn),經(jīng)過平移,還可以得到另外3條,所以共有4種可能;
當(dāng)n為偶數(shù)時(shí),拋物線開口向上,如圖2,將點(diǎn)E、H、C的坐標(biāo)代入拋物線解析式、判斷拋物線經(jīng)過這三點(diǎn),經(jīng)過平移,還可以得到另外3條,所以共有有4種可能;
所有滿足條件的拋物線共有8條.
故答案為:8
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在坡角為30°的山坡上有一鐵塔AB,其正前方矗立著一大型廣告牌,當(dāng)陽光與水平線成45°角時(shí),測得鐵塔AB落在斜坡上的影子BD的長為6米,落在廣告牌上的影子CD的長為4米,求鐵塔AB的高(AB,CD均與水平面垂直,結(jié)果保留根號).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于x的一元二次方程x2+(2k+1)x+k2+1=0有兩個(gè)不等實(shí)根x1、x2.
(1)求實(shí)數(shù)k的取值范圍.
(2)若方程兩實(shí)根x1、x2滿足x1+x2=﹣x1x2,求k的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,弦CD⊥AB于點(diǎn)E,點(diǎn)G在直徑DF的延長線上,∠D=∠G=30°.
(1)求證:CG是⊙O的切線 (2)若CD=6,求GF的長
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC∽△ADE,∠BAC=∠DAE=90°,AB=16,AC=12,F是DE的中點(diǎn), 若點(diǎn)E是直線BC上的動點(diǎn),連接BF,則BF的最小值是____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O直徑,AC為⊙O的弦,過⊙O外的點(diǎn)D作DE⊥OA于點(diǎn)E,交AC于點(diǎn)F,連接DC并延長交AB的延長線于點(diǎn)P,且∠D=2∠A,作CH⊥AB于點(diǎn)H.
(1)判斷直線DC與⊙O的位置關(guān)系,并說明理由;
(2)若HB=2,cosD=,請求出AC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的方程x2-2(k-1)x+k2 =0有兩個(gè)實(shí)數(shù)根x1.x2.
(1)求實(shí) 數(shù)k的取值范圍;
(2)若(x1+1)(x2+1)=2,試求k的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某居民小區(qū)一處圓柱形的輸水管道破裂,維修人員為更換管道,需確定管道圓形截面的半徑,如圖是水平放置的破裂管道有水部分的截面.
(1)請你用直尺和圓規(guī)作出這個(gè)輸水管道的圓形截面的圓心(保留作圖痕跡);
(2)若這個(gè)輸水管道有水部分的水面寬AB=8 cm,水面最深地方的高度為2 cm,求這個(gè)圓形截面的半徑.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com