【題目】如圖1,在數(shù)軸上A、B兩點對應(yīng)的數(shù)分別是6-6,∠DCE=90°CO重合,D點在數(shù)軸的正半軸上)

1)如圖1,若CF平分∠ACE,則∠AOF=_______;

2)如圖2,將∠DCE沿數(shù)軸的正半軸向右平移t0<t<3)個單位后,再繞頂點C逆時針旋轉(zhuǎn)30t度,作CF平分∠ACE,此時記∠DCF=α.

①當t=1時,α=_________;

②猜想∠BCEα的數(shù)量關(guān)系,并證明;

3)如圖3,開始∠D1C1E1與∠DCE重合,將∠DCE沿數(shù)軸正半軸向右平移t0<t<3)個單位,再繞頂點C逆時針旋轉(zhuǎn)30t度,作CF平分∠ACE,此時記∠DCF=α,與此同時,將∠D1C1E1沿數(shù)軸的負半軸向左平移t0<t<3)個單位,再繞頂點C1順時針旋轉(zhuǎn)30t度,作C1F1平分∠AC1E1,記∠D1C1F1,若α,β滿足|α-β|=45°,請用t的式子表示αβ并直接寫出t的值.

【答案】145°;(2①30°;②∠BCE=2α,證明見解析;(3α=45-15t ,β=45+15t,

【解析】

1)根據(jù)角平分線的定義即可得出答案;

2)①首先由旋轉(zhuǎn)得到∠ACE=120°,再由角平分線的定義求出∠ACF,再減去旋轉(zhuǎn)角度即可得到∠DCF

②先由補角的定義表示出∠BCE,再根據(jù)旋轉(zhuǎn)和角平分線的定義表示出∠DCF,即可得出兩者的數(shù)量關(guān)系;

3)根據(jù)α=FCA-DCA,β=AC1D1+AC1F1,可得到表達式,再根據(jù)|α-β|=45°建立方程求解.

1)∵∠ACE=90°,CF平分∠ACE

∴∠AOF=ACE=45°

故答案為:45°;

2t=1時,旋轉(zhuǎn)角度為30°

∴∠ACE=90°+30°=120°

CF平分∠ACE

∴∠ACF=60°,α=∠DCF=ACF-30°=30°

故答案為:30°;

②∠BCE=2α,證明如下:

旋轉(zhuǎn)30t度后,∠ACE=(90+30t)

∠BCE=180-(90+30t)=(90-30t)

CF平分∠ACE

∴∠ACF=ACE=(45+15t)

DCF=ACF-30t=(45-15t)

2DCF=2(45-15t)= 90-30t=BCE

即∠BCE=2α

3α=∠FCA-∠DCA=(90+30t)-30t=45-15t

β=∠AC1D1+∠AC1F1=30t+(90-30t)=45+15t

|30t|=45°

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD是平行四邊形,PCD上一點,且APBP分別平分∠DAB和∠CBA.

(1)求∠APB的度數(shù);

(2)如果AD=5 cm,AP=8 cm,求△APB的周長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知二次函數(shù)y=ax2+bx+ca≠0)的圖象經(jīng)過點A1,0),B2,0),C0,﹣2),直線x=mm2)與x軸交于點D

1)求二次函數(shù)的解析式;

2)在直線x=mm2)上有一點E(點E在第四象限),使得E、DB為頂點的三角形與以A、OC為頂點的三角形相似,求E點坐標(用含m的代數(shù)式表示);

3)在(2)成立的條件下,拋物線上是否存在一點F,使得四邊形ABEF為平行四邊形?若存在,請求出F點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD中,∠ABC=ADC=90°,BD平分∠ABC,DCB=60°,AB+BC=8,則AC的長是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC中,點O是邊AC上一個動點,過O作直線MNBC,設(shè)MN交∠ACB的平分線于點E,交∠ACB的外角平分線于點F

1)探究:線段OEOF的數(shù)量關(guān)系并加以證明;

2)當點O運動到何處時,且ABC滿足什么條件時,四邊形AECF是正方形?

3)當點O在邊AC上運動時,四邊形BCFE   是菱形嗎?(填可能不可能

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算:

1

2

3

4

5

6

7

8

9

10

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某工廠生產(chǎn)某種產(chǎn)品,每件產(chǎn)品的生產(chǎn)成本為25元,出廠價為50元.在生產(chǎn)過程中,平均每生產(chǎn)一件這種產(chǎn)品有0.5m3的污水排出.為凈化環(huán)境,該廠購買了一套污水處理設(shè)備,每處理1m3污水所需原材料費為2元,每月排污設(shè)備耗費4000元.

1)請給出該廠每月的利潤與產(chǎn)品件數(shù)的函數(shù)關(guān)系式;

2)為保證每月盈利30000元,該廠每月至少需生產(chǎn)并銷售這種產(chǎn)品多少件?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一段拋物線y=﹣xx﹣2)(0≤x≤2)記為C1,它與x軸交于兩點O,A1;C1A1旋轉(zhuǎn)180°得到C2,交x軸于A2;將C2A2旋轉(zhuǎn)180°得到C3,交x軸于A3;…如此進行下去,直至得到C6若點P(11,m)在第6段拋物線C6m=_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為進一步豐富學生課余文化生活和營造朝氣蓬勃的校園文化氛圍,學校組織學生開展了各種文體活動、社團活動,現(xiàn)在開展的社團活動有音樂,體育,美術(shù),攝影四類,每個同學必須且只能從中選擇參加一個社團,為了解學生參與社團活動的情況,學生會成員隨機調(diào)查了一部分學生所參加的社團類別并繪制了以下兩幅不完整的統(tǒng)計圖,請你根據(jù)統(tǒng)計圖提供的信息,解答下列問題:

社團活動條形統(tǒng)計圖 社團活動扇形統(tǒng)計圖

(1)本次一共調(diào)查了_____________________名同學;

(2)補全統(tǒng)計圖;在扇形統(tǒng)計圖中,“美術(shù)”所在扇形的圓心角的度數(shù)為_______________;

(3)小明和小亮都想報美術(shù),攝影,體育社團,用畫樹狀圖或列表的方法,求他們恰好參加同一社團的概率。

查看答案和解析>>

同步練習冊答案