【題目】已知:如圖,△ABC是邊長(zhǎng)為3cm的等邊三角形,動(dòng)點(diǎn)P、Q同時(shí)從A、B兩點(diǎn)出發(fā),分別沿AB、BC方向勻速移動(dòng),它們的速度都是1cm/s,當(dāng)點(diǎn)P到達(dá)點(diǎn)B時(shí),P、Q兩點(diǎn)停止運(yùn)動(dòng),設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間t(s),解答下列各問(wèn)題:
(1)經(jīng)過(guò) 秒時(shí),求△PBQ的面積;
(2)當(dāng)t為何值時(shí),△PBQ是直角三角形?
(3)是否存在某一時(shí)刻t,使四邊形APQC的面積是△ABC面積的三分之二?如果存在,求出t的值;不存在請(qǐng)說(shuō)明理由.

【答案】
(1)解:經(jīng)過(guò) 秒時(shí),AP= cm,BQ= cm,

∵△ABC是邊長(zhǎng)為3cm的等邊三角形,

∴AB=BC=3cm,∠B=60°,

∴BP=3﹣ = cm,

∴△PBQ的面積= BPBQsin∠B= × × × =


(2)解:設(shè)經(jīng)過(guò)t秒△PBQ是直角三角形,

則AP=tcm,BQ=tcm,

△ABC中,AB=BC=3cm,∠B=60°,

∴BP=(3﹣t)cm,

△PBQ中,BP=(3﹣t)cm,BQ=tcm,若△PBQ是直角三角形,則∠BQP=90°或∠BPQ=90°,

當(dāng)∠BQP=90°時(shí),BQ= BP,

即t= (3﹣t),t=1(秒),

當(dāng)∠BPQ=90°時(shí),BP= BQ,

3﹣t= t,t=2(秒),

答:當(dāng)t=1秒或t=2秒時(shí),△PBQ是直角三角形


(3)解:過(guò)P作PM⊥BC于M,

△BPM中,sin∠B= ,

∴PM=PBsin∠B= (3﹣t),

∴SPBQ= BQPM= t (3﹣t),

∴y=SABC﹣SPBQ= ×32× ×t× (3﹣t)

= t2 t+ ,

∴y與t的關(guān)系式為y= t2 t+

假設(shè)存在某一時(shí)刻t,使得四邊形APQC的面積是△ABC面積的 ,

則S四邊形APQC= SABC,

t2 t+ = × ×32× ,

∴t2﹣3t+3=0,

∵(﹣3)2﹣4×1×3<0,

∴方程無(wú)解,

∴無(wú)論t取何值,四邊形APQC的面積都不可能是△ABC面積的


【解析】(1)根據(jù)路程=速度×?xí)r間,求出BQ,AP的值,再求出BP的值,然后利用三角形的面積公式進(jìn)行解答即可;(2)①∠BPQ=90°;②∠BQP=90°.然后在直角三角形BQP中根據(jù)BP,BQ的表達(dá)式和∠B的度數(shù)進(jìn)行求解即可.(3)本題可先用△ABC的面積﹣△PBQ的面積表示出四邊形APQC的面積,即可得出y,t的函數(shù)關(guān)系式,然后另y等于三角形ABC面積的三分之二,可得出一個(gè)關(guān)于t的方程,如果方程無(wú)解則說(shuō)明不存在這樣的t值,如果方程有解,那么求出的t值即可

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若方程(a-2)x2-2018x+2019=0是關(guān)于x的一元二次方程,則( )

A.a≠1B.a≠-2C.a≠2D.a≠3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y軸交于點(diǎn)A(0,- ),與x軸交于BC兩點(diǎn),其對(duì)稱軸與x軸交于點(diǎn)D,直線lAB且過(guò)點(diǎn)D.

(1)求AB所在直線的函數(shù)表達(dá)式;

(2)請(qǐng)你判斷△ABD的形狀并證明你的結(jié)論;

(3)點(diǎn)E在線段AD上運(yùn)動(dòng)且與點(diǎn)AD不重合,點(diǎn)F在直線l上運(yùn)動(dòng),且∠BEF=60°,連接BF,求出△BEF面積的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】“囧”(jiǒng).經(jīng)是一個(gè)風(fēng)靡網(wǎng)絡(luò)的流行詞,像一個(gè)人臉郁悶的神情.如圖所示,一張邊長(zhǎng)為20cm的正方形的紙片,剪去兩個(gè)一樣的小直角三角形和一個(gè)長(zhǎng)方形得到一個(gè)“囧”字圖案(陰影部分).設(shè)剪去的小長(zhǎng)方形長(zhǎng)和寬分別為xcm、ycm.剪去的兩個(gè)小直角三角形的兩宜角邊長(zhǎng)也分別為xcm,ycm.
(1)用含有x,y的代數(shù)式表示圖中“囧”(陰影部分)的面積;
(2)當(dāng)x=8cm,y=6cm時(shí),求此時(shí)“囧”(陰影部分)的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】矩形的兩條對(duì)角線的一個(gè)交角為60o,兩條對(duì)角線的和為8cm,則這個(gè)矩形的一條較短邊為 cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知兩個(gè)相似三角形的周長(zhǎng)比為4:9,則它們的面積比為( )

A. 4:9B. 2:3C. 8:18D. 16:81

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商店有兩種進(jìn)價(jià)不同的計(jì)算機(jī)都賣了64元,其中一個(gè)贏利60%,另一個(gè)虧本20%,在這次買賣中這家商店( )

A. 不賠不賺 B. 賺了8元 C. 賠了8元 D. 賺了32元

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如果一個(gè)多邊形的每一個(gè)外角都是60°,那么這個(gè)多邊形是( )

A. 四邊形 B. 五邊形 C. 六邊形 D. 八邊形

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】因式分解:xy2﹣4xy+4x=

查看答案和解析>>

同步練習(xí)冊(cè)答案