【題目】如圖,將一張矩形紙板按圖中虛線裁剪成九塊,其中有兩塊是邊長(zhǎng)都為m的大正方形,兩塊是邊長(zhǎng)都為n的小正方形,五塊是長(zhǎng)為m,寬為n的全等小矩形,且m>n.(以上長(zhǎng)度單位:cm)
(1)觀察圖形,可以發(fā)現(xiàn)代數(shù)式2m2+5mn+2n2可以因式分解為 ;
(2)若每塊小矩形的面積為10cm2,兩個(gè)大正方形和兩個(gè)小正方形的面積和為58cm2,試求m+n的值
(3)②圖中所有裁剪線(虛線部分)長(zhǎng)之和為 cm.(直接寫出結(jié)果)
【答案】(1)(2m+n)(m+2n);(2)7;(3)42
【解析】
(1)根據(jù)圖象由長(zhǎng)方形面積公式將代數(shù)式 2m2+5mn+2n2因式分解即可;
(2)根據(jù)正方形的面積得出正方形的邊長(zhǎng),再利用每塊小矩形的面積為10平方厘米,得出等式求出m+n,
(3)根據(jù)m+n的值,進(jìn)一步得到圖中所有裁剪線(虛線部分)長(zhǎng)之和即可.
解:(1)由圖形可知,2m2+5mn+2n2=(2m+n)(m+2n),
故答案為(2m+n)(m+2n);
(2)依題意得,2m2+2n2=58,mn=10,
∴m2+n2=29,
∴(m+n)2=m2+n2+2mn=29+20=49,
∴m+n=7,
故答案為7.
(3)圖中所有裁剪線段之和為7×6=42(cm).
故答案為42.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】課本中有一道作業(yè)題:有一塊三角形余料ABC,它的邊BC=120mm,高AD=80mm.要把它加工成正方形零件,使正方形的一邊在BC上,其余兩個(gè)頂點(diǎn)分別在AB,AC上.
(1)加工成的正方形零件的邊長(zhǎng)是多少mm?
(2)如果原題中要加工的零件是一個(gè)矩形,且此矩形是由兩個(gè)并排放置的正方形所組成,如圖1,此時(shí),這個(gè)矩形零件的兩條邊長(zhǎng)又分別為多少?請(qǐng)你計(jì)算.
(3)如果原題中所要加工的零件只是一個(gè)矩形,如圖2,這樣,此矩形零件的兩條邊長(zhǎng)就不能確定,但這個(gè)矩形面積有最大值,求達(dá)到這個(gè)最大值時(shí)矩形零件的兩條邊長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=3,點(diǎn)E為邊CD上一點(diǎn),將△ADE沿AE所在直線翻折,得到△AFE,點(diǎn)F恰好是BC的中點(diǎn),M為AF上一動(dòng)點(diǎn),作MN⊥AD于N,則BM+AN的最小值為____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,∠B=90°, AB//CD,M為BC邊上的一點(diǎn),AM平分∠BAD,DM平分∠ADC,
求證:(1) AM⊥DM;
(2) M為BC的中點(diǎn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形的頂點(diǎn)、分別在軸和軸上,點(diǎn)的坐標(biāo)為,雙曲線,的圖象經(jīng)過上的點(diǎn)與交于點(diǎn),連接,若若是的中點(diǎn)﹒
(1)求點(diǎn)的坐標(biāo);
(2)點(diǎn)是邊上一點(diǎn),若和相似,求的解析式;
(3)若點(diǎn)也在此反比例函數(shù)的圖象上(其中),過點(diǎn)作軸的垂線,交軸于點(diǎn),若線段上存在一點(diǎn),使得的面積是,設(shè)點(diǎn)的縱坐標(biāo)為,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知在△ABC中,AB=AC,射線BM、BN在∠ABC內(nèi)部,分別交線段AC于點(diǎn)G、H.
(1)如圖1,若∠ABC=60°,∠MBN=30°,作AE⊥BN于點(diǎn)D,分別交BC、BM于點(diǎn)E、F.
①求證:∠1=∠2;
②如圖2,若BF=2AF,連接CF,求證:BF⊥CF;
(2)如圖3,點(diǎn)E為BC上一點(diǎn),AE交BM于點(diǎn)F,連接CF,若∠BFE=∠BAC=2∠CFE,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某數(shù)學(xué)活動(dòng)小組在作等邊三角形的拓展圖形,研究其性質(zhì)時(shí),經(jīng)歷了如下過程:
操作發(fā)現(xiàn):在等腰△ABC中,AB=AC,分別以AB和AC為斜邊,向△ABC的外側(cè)作等腰直角三角形,如圖1所示,其中DF⊥AB于點(diǎn)F,EG⊥AC于點(diǎn)G,M是BC的中點(diǎn),連接MD和ME,則下列結(jié)論正確的是____(填序號(hào)即可)
;;整個(gè)圖形是軸對(duì)稱圖形;.
數(shù)學(xué)思考:在任意中,分別以AB和AC為斜邊,向的外側(cè)作等腰直角三角形,如圖2所示,M是BC的中點(diǎn),連接MD和ME,則MD與ME具有怎樣的數(shù)量和位置關(guān)系?請(qǐng)給出證明過程;
類比研究:在任意中,仍分別以AB和AC為斜邊,向的內(nèi)側(cè)作等腰直角三角形,如圖3所示,M是BC的中點(diǎn),連接MD和ME,試判斷的形狀?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察下列格式, - , , , …
(1)化簡(jiǎn)以上各式,并計(jì)算出結(jié)果;
(2)以上格式的結(jié)果存在一定的規(guī)律,請(qǐng)按規(guī)律寫出第5個(gè)式子及結(jié)果.
(3)用含n(n≥1的整數(shù))的式子寫出第n個(gè)式子及結(jié)果,并給出證明的過程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本題6分)在一次消防演習(xí)中,消防員架起一架25米長(zhǎng)的云梯AB,如圖斜靠在一面墻上,梯子底端B離墻角C的距離為7米。
(1)求這個(gè)梯子的頂端距地面的高度AC是多少?
(2)如果消防員接到命令,按要求將梯子底部在水平方向滑 動(dòng)后停在DE的位置上(云梯長(zhǎng)度不變),測(cè)得BD長(zhǎng)為8米,那么云梯的頂部在下滑了多少米?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com