【題目】二次函數(shù)y=ax2+bx+ca≠0)的部分圖象如圖所示,圖象過點(﹣1,0),對稱軸為直線x=2,下列結論:(1)4a+b=0;(29a+c3b;(37a3b+2c0;(4)若點A(﹣3,y1)、點B(﹣,y2)、點C(7,y3)在該函數(shù)圖象上,則y1y3y2;(5)若方程a(x+1)(x﹣5)=﹣3的兩根為x1和x2,且x1x2,則x115x2.其中正確的結論有( 。

A. 2個 B. 3個 C. 4個 D. 5個

【答案】B

【解析】根據(jù)題意和函數(shù)的圖像,可知拋物線的對稱軸為直線x=-=2,即b=-4a,變形為4a+b=0,所以(1)正確;

由x=-3時,y>0,可得9a+3b+c>0,可得9a+c>-3c,故(2)正確;

因為拋物線與x軸的一個交點為(-1,0)可知a-b+c=0,而由對稱軸知b=-4a,可得a+4a+c=0,即c=-5a.代入可得7a﹣3b+2c=7a+12a-5a=14a,由函數(shù)的圖像開口向下,可知a<0,因此7a﹣3b+2c<0,故(3)不正確;

根據(jù)圖像可知當x<2時,y隨x增大而增大,當x>2時,y隨x增大而減小,可知若點A(﹣3,y1)、點B(﹣,y2)、點C(7,y3)在該函數(shù)圖象上,則y1=y3<y2,故(4)不正確;

根據(jù)函數(shù)的對稱性可知函數(shù)與x軸的另一交點坐標為(5,0),所以若方程a(x+1)(x﹣5)=﹣3的兩根為x1和x2,且x1<x2,則x1<﹣1<x2,故(5)正確.

正確的共有3個.

故選:B.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】希臘數(shù)學家丟番圖(公元3-4世紀)的墓碑上記載著:他生命的六分之一是幸福的童年;再活了他生命的十二分之一,兩頰長起了細細的胡須;他結了婚,又度過了一生的七分之一;再過五年,他有了兒子,感到很幸福;可是兒子只活了他父親全部年齡的一半;兒子死后,他在極度悲痛中度過了四年,也與世長辭了.”

根據(jù)以上信息,請你算出:

1)丟番圖的壽命;

2)丟番圖開始當爸爸時的年齡;

3)兒子死時丟番圖的年齡.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知直線y=kx+b經(jīng)過點A37)和B(﹣8,-4).

1)求直線的解析式;

2)求出該直線與x軸、y軸的交點坐標。并求出直線與兩坐標軸圍成三角形的面積。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,有一塊直角三角形紙片,兩直角邊AB6,BC8,將△ABC折疊,使AB落在斜邊AC上,折痕為AD,則BD的長為( )

A. 6B. 5C. 4D. 3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】定義:如圖1,點M,N把線段AB分割成AM,MN和BN,若以AM,MN,BN為邊的三角形是一個直角三角形,則稱點M,N是線段AB的勾股分割點.

(1)已知點M,N是線段AB的勾股分割點,若AM=3,MN=4求BN的長;

(2)已知點C是線段AB上的一定點,其位置如圖2所示,請在BC上畫一點D,使C,D是線段AB的勾股分割點(要求尺規(guī)作圖,保留作圖痕跡,畫出一種情形即可);

(3)如圖3,正方形ABCD中,M,N分別在BC,DC上,且BM≠DN,∠MAN=45°,AM,AN分別交BD于E,F(xiàn).

求證:E、F是線段BD的勾股分割點;

②△AMN的面積是AEF面積的兩倍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】將連續(xù)的奇數(shù)13、5、7、9、11……按一定規(guī)律排成如下表:

圖中的字框框住了四個數(shù),若將字框上下左右移動,按同樣的方式可框住另外的四個數(shù).

1)數(shù)表中從小到大排列的第9個數(shù)是17,第40個數(shù)是______,第100個數(shù)是______,第個數(shù)是______;

2)設字框內處于中間且靠上方的數(shù)是整個數(shù)表中從小到大排列的第個數(shù),請你用含的代數(shù)式表示字框中的四個數(shù)的和;

3)若將字框上下左右移動,框住的四個數(shù)的和能等于406嗎?如能,求出這四個數(shù),如不能,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】2018無錫市體育中考男生項目分為速度耐力類、力量類和靈巧類,每位考生只能在三類中各選一項進行考試.其中速度耐力類項目有:50米跑、800米跑、50米游泳;力量類項目有:擲實心球、引體向上;靈巧類項目有:30秒鐘跳繩、立定跳遠、俯臥撐、籃球運球.男生小明“50米跑是強項,他決定必選,其它項目在平時測試中成績完全相同,他決定隨機選擇.

(1)請用畫樹狀圖或列表的方法求小明50米跑、引體向上和立定跳遠’”的概率;

(2)小明所選的項目中有立定跳遠的概率是   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,BD平分∠ABC,且ADBD,EAC的中點,AD6cmBD8cmBC16cm,則DE的長為_____cm

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了美化環(huán)境,建設宜居成都,我市準備在一個廣場上種植甲、乙兩種花卉.經(jīng)市場調查,甲種花卉的種植費用(元)與種植面積之間的函數(shù)關系如圖所示,乙種花卉的種植費用為每平方米100.

(1)直接寫出當時,的函數(shù)關系式;

(2)廣場上甲、乙兩種花卉的種植面積共,若甲種花卉的種植面積不少于且不超過乙種花卉種植面積的2倍,那么應該怎樣分配甲、乙兩種花卉的種植面積才能使種植費用最少?最少總費用為多少元?

查看答案和解析>>

同步練習冊答案