【題目】如圖,已知RtABC中,∠C90°AD是∠BAC的角平分線.

1)請(qǐng)尺規(guī)作圖:作⊙O,使圓心OAB上,且AD為⊙O的一條弦.(不寫作法,保留作圖痕跡);

2)判斷直線BC與所作⊙O的位置關(guān)系,并說明理由.

【答案】(1)見解析;(2)直線BC與所作⊙O相切,理由見解析

【解析】

1)作AD的垂直平分線交AB于點(diǎn)O,以OA為半徑畫圓即可;

2)連接OD,通過等邊對(duì)等角和角平分線的定義可得出∠CAD=∠ODA,從而有ODAC,ODB=∠C90°所以BC為⊙O的切線

1)如圖,⊙O為所作;

2)直線BC與所作⊙O相切.

理由如下:連接OD,如圖,

OAOD,

∴∠OAD=∠ODA,

AD平分∠BAC,

∴∠OAD=∠CAD,

∴∠CAD=∠ODA,

ODAC,

∵∠C90°

∴∠ODB90°,

ODBC,

BC為⊙O的切線.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若一個(gè)三角形一條邊的平方等于另兩條邊的乘積,我們稱這個(gè)三角形是比例三角形.

1)已知△ABC是比例三角形,AB1BC2,求AC的長.

2)如圖1,在四邊形ABCD中,ABAD,對(duì)角線BD平分∠ABC,∠BAC=∠ADC

求證:△ABC是比例三角形

ABDC,如圖2,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】仙桃是遂寧市某地的特色時(shí)令水果.仙桃一上市,水果店的老板用2400元購進(jìn)一批仙桃,很快售完;老板又用3700元購進(jìn)第二批仙桃,所購件數(shù)是第一批的倍,但進(jìn)價(jià)比第一批每件多了5元.

1)第一批仙桃每件進(jìn)價(jià)是多少元?

2)老板以每件225元的價(jià)格銷售第二批仙桃,售出80%后,為了盡快售完,剩下的決定打折促銷.要使得第二批仙桃的銷售利潤不少于440元,剩余的仙桃每件售價(jià)至少打幾折?(利潤=售價(jià)﹣進(jìn)價(jià))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,過點(diǎn)A5,)的拋物線yax2+bx的對(duì)稱軸是x2,點(diǎn)B是拋物線與x軸的一個(gè)交點(diǎn),點(diǎn)Cy軸上,點(diǎn)D是拋物線的頂點(diǎn).

1)求ab的值;

2)當(dāng)△BCD是直角三角形時(shí),求△OBC的面積;

3)設(shè)點(diǎn)P在直線OA下方且在拋物線yax2+bx上,點(diǎn)MN在拋物線的對(duì)稱軸上(點(diǎn)M在點(diǎn)N的上方),且MN2,過點(diǎn)Py軸的平行線交直線OA于點(diǎn)Q,當(dāng)PQ最大時(shí),請(qǐng)直接寫出四邊形BQMN的周長最小時(shí)點(diǎn)Q、M、N的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某班數(shù)學(xué)興趣小組對(duì)函數(shù)y=x2﹣2|x|的圖象和性質(zhì)進(jìn)行了探究,探究過程如下,請(qǐng)補(bǔ)充完整.(1)自變量x的取值范圍是全體實(shí)數(shù),xy的幾組對(duì)應(yīng)值列表如下:

x

﹣3

﹣2

﹣1

0

1

2

3

y

3

m

﹣1

0

﹣1

0

3

其中,m=  

2)根據(jù)表中數(shù)據(jù),在如圖所示的平面直角坐標(biāo)系中描點(diǎn),并畫出了函數(shù)圖象的一部分,請(qǐng)畫出該函數(shù)圖象的另一部分.

3)觀察函數(shù)圖象,寫出兩條函數(shù)的性質(zhì).

4)進(jìn)一步探究函數(shù)圖象發(fā)現(xiàn):

①函數(shù)圖象與x軸有  個(gè)交點(diǎn),所以對(duì)應(yīng)的方程x2﹣2|x|=0   個(gè)實(shí)數(shù)根;

②方程x2﹣2|x|=2  個(gè)實(shí)數(shù)根.

③關(guān)于x的方程x2﹣2|x|=a4個(gè)實(shí)數(shù)根時(shí),a的取值范圍是 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠C90°,點(diǎn)P是邊AC上一點(diǎn),過點(diǎn)PPQABBC于點(diǎn)Q,D為線段PQ的中點(diǎn),BD平分∠ABC,以下四個(gè)結(jié)論①△BQD是等腰三角形;②BQDP;③PAQP;④=(1+2;其中正確的結(jié)論的個(gè)數(shù)( 。

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,拋物線的對(duì)稱軸為直線,與軸的一個(gè)交點(diǎn)坐標(biāo)為,其部分圖象如圖所示,下列結(jié)論:

;

;

③方程的兩個(gè)根是

④方程有一個(gè)實(shí)根大于;

⑤當(dāng)時(shí),增大而增大.

其中結(jié)論正確的個(gè)數(shù)是( )

A.個(gè)B.個(gè)C.個(gè)D.個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,以AB為直徑的⊙O分別交BC、AC于點(diǎn)D、E,連結(jié)EBOD于點(diǎn)F

1)求證:OD⊥BE;

2)若DE=,AB=,求AE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列函數(shù)中,y關(guān)于x的二次函數(shù)是( )

A. yax2+bx+c B. yx(x1)

C. y= D. y(x1)2x2

查看答案和解析>>

同步練習(xí)冊(cè)答案