為了使同學(xué)們更好地解答本題,我們提供了思路點(diǎn)撥,你可以依照這個(gè)思路填空,并完成本題解答的全過程,當(dāng)然你也可以不填空,只需按照解答的一般要求,進(jìn)行解答即可.
如圖,已知AB=AD,∠BAD=60°,∠BCD=120°,延長BC,使CE=CD,連接DE,求證:BC+DC=AC.
思路點(diǎn)撥:
(1)由已知條件AB=AD,∠BAD=60°,可知:△ABD是______三角形;
(2)同理由已知條件∠BCD=120°得到∠DCE=______,且CE=CD,可知______;
(3)要證BC+DC=AC,可將問題轉(zhuǎn)化為兩條線段相等,即______=______;
(4)要證(3)中所填寫的兩條線段相等,可以先證明….請你完成證明過程:
(1)連接BD,
∵AB=AD,∠BAD=60°,
∴△ABD是等邊三角形,
故答案為:等邊.

(2)∵∠BCD=120°,
∴∠DCE=180°-∠BCD=180°-120°=60°,
∵CE=CD,
∴△DCE是等邊三角形,
故答案為:60°,△DCE是等邊三角形.

(3)證明:∵等邊三角形ABD和DCE,
∴AD=BD,CD=DE,∠ADB=∠CDE=60°,
∴∠ADB+∠BDC=∠CDE+∠BDC,
即∠ADC=∠BDE,
在△ADC和△BDE中,
AD=BD
∠ADC=∠BDE
DC=DE
,
∴△ADC≌△BDE,
∴AC=BE=BC+CE,
故答案為:BE=AC.

(4)由(3)知:證△BED≌△ACD.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在△ABC中,AB=AC=2,∠B=∠C=40°,點(diǎn)D在線段BC上運(yùn)動(D不與B、C重合),連接AD,作∠ADE=40°,DE交線段AC于E.
(1)當(dāng)∠BDA=115°時(shí),∠EDC=______°,∠DEC=______°;點(diǎn)D從B向C運(yùn)動時(shí),∠BDA逐漸變______(填“大”或“小”);
(2)當(dāng)DC等于多少時(shí),△ABD≌△DCE,請說明理由;
(3)在點(diǎn)D的運(yùn)動過程中,△ADE的形狀可以是等腰三角形嗎?若可以,請直接寫出∠BDA的度數(shù).若不可以,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在等邊△ABC的邊BC上任取一點(diǎn)D,作∠ADE=60°,DE交∠C的外角平分線于E,則△ADE是______三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

已知x,y,z都是大于0且小于1的實(shí)數(shù),則x(1-y)+y(1-z)+z(1-x)的值( 。
A.大于1B.等于1
C.小于1D.大于或等于1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

已知:點(diǎn)P是等邊△ABC內(nèi)任意一點(diǎn),它到三邊的距離分別為h1、h2、h3,且滿足h1+h2+h3=6,則S△ABC=______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖1,△ABC為等邊三角形,面積為S.D1、E1、F1分別是△ABC三邊上的點(diǎn),且AD1=BE1=CF1=
1
2
AB,連接D1E1、E1F1、F1D1,可得△D1E1F1是等邊三角形,此時(shí)△AD1F1的面積S1=
1
4
S,△D1E1F1的面積S1=
1
4
S.
(1)當(dāng)D2、E2、F2分別是等邊△ABC三邊上的點(diǎn),且AD2=BE2=CF2=
1
3
AB時(shí)如圖2,
①求證:△D2E2F2是等邊三角形;
②若用S表示△AD2F2的面積S2,則S2=______;若用S表示△D2E2F2的面積S2′,則S2′=______.
(2)按照上述思路探索下去,并填空:
當(dāng)Dn、En、Fn分別是等邊△ABC三邊上的點(diǎn),ADn=BEn=CFn=
1
n+1
AB時(shí),(n為正整數(shù))△DnEnFn是______三角形;
若用S表示△ADnFn的面積Sn,則Sn=______;若用S表示△DnEnFn的面積Sn′,則S′n=______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,邊長為3的正△ABC中,M、N分別位于AC、BC上,且AM=1,BN=2.過C、M、N三點(diǎn)的圓交△ABC的一條對稱軸于另一點(diǎn)0.求證:點(diǎn)O是正△ABC的中心.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

正三角形OAB的頂點(diǎn)O是原點(diǎn),A點(diǎn)坐標(biāo)是(-2,0),B點(diǎn)在第二象限,則B點(diǎn)的坐標(biāo)是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,A、B、C三點(diǎn)在同一直線上,分別以AB、BC為邊,在直線AC的同側(cè)作等邊△ABC和等邊△BCE,連接AE交BD于點(diǎn)M,連接CD交BE于點(diǎn)N,連接MN得△BMN,試判斷△BMN的形狀,并說明理由.

查看答案和解析>>

同步練習(xí)冊答案