【題目】如圖1是一座立交橋的示意圖(道路寬度忽略不計(jì)), A為入口, F,G為出口,其中直行道為AB,CG,EF,且AB=CG=EF ;彎道為以點(diǎn)O為圓心的一段弧,且,,所對(duì)的圓心角均為90°.甲、乙兩車(chē)由A口同時(shí)駛?cè)肓⒔粯,均?/span>10m/s的速度行駛,從不同出口駛出. 其間兩車(chē)到點(diǎn)O的距離y(m)與時(shí)間x(s)的對(duì)應(yīng)關(guān)系如圖2所示.結(jié)合題目信息,下列說(shuō)法:①甲車(chē)在立交橋上共行駛8s;②從F口出比從G口出多行駛40m;③甲車(chē)從F口出,乙車(chē)從G口出;④立交橋總長(zhǎng)為150m.其中正確的是( )
A. ①②③ B. ①②④ C. ①② D. ①
【答案】B
【解析】
由已知可得,甲先出出口;乙車(chē)從F口出,甲車(chē)從G口出;甲車(chē)走完所用時(shí)間是5-3=2(s),走完所用時(shí)間是4s,走完AB所用時(shí)間是3s,因?yàn)榫?/span>10m/s的速度行駛,AB=CG=EF,所以,走完AB,CG,EF時(shí)間都是3s,根據(jù)要求可得出正確答案.
由已知可得,甲先出出口;乙車(chē)從F口出,甲車(chē)從G口出;甲車(chē)走完所用時(shí)間是5-3=2(s),走完所用時(shí)間是4s,走完AB所用時(shí)間是3s,因?yàn)榫?/span>10m/s的速度行駛,AB=CG=EF,所以,走完AB,CG,EF時(shí)間都是3s,所以,甲車(chē)在立交橋上共行駛5+3=8s;從F口出比從G口出多行駛10×2×2=40(m);所以,立交橋總長(zhǎng)為10×8+40+10×3=150m.
所以,說(shuō)法正確的是①②④
故選:B
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知線段,是直線上一動(dòng)點(diǎn),點(diǎn),分別為,的中點(diǎn),對(duì)下列各值:①線段的長(zhǎng);②的周長(zhǎng);③的面積;④直線,之間的距離;⑤的大。渲胁粫(huì)隨點(diǎn)的移動(dòng)而改變的是_____.(填序號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,直線AB交x軸于點(diǎn)A(,0),交y軸于點(diǎn)B(0,),且.b滿足
(1)求證:OA=OB;
(2)如圖1,若C的坐標(biāo)為(-1,0),且AH⊥BC于點(diǎn)H,AH交OB于點(diǎn)P,試求點(diǎn)P的坐標(biāo);
(3)如圖2,連接OH,求證:∠OHP=45°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)如圖①所示,將繞頂點(diǎn)按逆時(shí)針?lè)较蛐D(zhuǎn)角,得到,,分別與、交于點(diǎn)、,與相交于點(diǎn).求證:;
(2)如圖②所示,和是全等的等腰直角三角形,,與、分別交于點(diǎn)、,請(qǐng)說(shuō)明,,之間的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“綠水青山就是金山銀山”的理念已融入人們的日常生活中,因此,越來(lái)越多的人喜歡騎自行車(chē)出行.某自行車(chē)店在銷售某型號(hào)自行車(chē)時(shí),以高出進(jìn)價(jià)的50%標(biāo)價(jià).已知按標(biāo)價(jià)九折銷售該型號(hào)自行車(chē)8輛與將標(biāo)價(jià)直降100元銷售7輛獲利相同.
(1)求該型號(hào)自行車(chē)的進(jìn)價(jià)和標(biāo)價(jià)分別是多少元?
(2)若該型號(hào)自行車(chē)的進(jìn)價(jià)不變,按(1)中的標(biāo)價(jià)出售,該店平均每月可售出51輛;若每輛自行車(chē)每降價(jià)20元,每月可多售出3輛,求該型號(hào)自行車(chē)降價(jià)多少元時(shí),每月獲利最大?最大利潤(rùn)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,在正方形ABCD中,點(diǎn)E、F分別在BC和CD上,AE = AF
(1)求證:BE = DF;
(2)連接AC交EF于點(diǎn)O,延長(zhǎng)OC至點(diǎn)M,使OM = OA,連接EM、FM.判斷四邊形AEMF是什么特殊四邊形?并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市推出電腦上網(wǎng)包月制,每月收取費(fèi)用y(元)與上網(wǎng)時(shí)間x(小時(shí))的函數(shù)關(guān)系如圖所示,其中BA是線段,且BA∥x軸,AC是射線.
(1)當(dāng)x≥30,求y與x之間的函數(shù)關(guān)系式;
(2)若小李4月份上網(wǎng)20小時(shí),他應(yīng)付多少元的上網(wǎng)費(fèi)用?
(3)若小李5月份上網(wǎng)費(fèi)用為75元,則他在該月份的上網(wǎng)時(shí)間是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若一次函數(shù)y=kx+m的圖象經(jīng)過(guò)二次函數(shù)y=ax2+bx+c的頂點(diǎn),我們則稱這兩個(gè)函數(shù)為“丘比特函數(shù)組”
(1)請(qǐng)判斷一次函數(shù)y=﹣3x+5和二次函數(shù)y=x2﹣4x+5是否為“丘比特函數(shù)組”,并說(shuō)明理由.
(2)若一次函數(shù)y=x+2和二次函數(shù)y=ax2+bx+c為“丘比特函數(shù)組”,已知二次函數(shù)y=ax2+bx+c頂點(diǎn)在二次函數(shù)y=2x2﹣3x﹣4圖象上并且二次函數(shù)y=ax2+bx+c經(jīng)過(guò)一次函數(shù)y=x+2與y軸的交點(diǎn),求二次函數(shù)y=ax2+bx+c的解析式;
(3)當(dāng)﹣3≤x≤﹣1時(shí),二次函數(shù)y=x2﹣2x﹣4的最小值為a,若“丘比特函數(shù)組”中的一次函數(shù)y=2x+3和二次函數(shù)y=ax2+bx+c(b、c為參數(shù))相交于PQ兩點(diǎn)請(qǐng)問(wèn)PQ的長(zhǎng)度為定值嗎?若是,請(qǐng)求出該定值;若不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知E、F、G、H分別為菱形ABCD四邊的中點(diǎn),AB=6cm,∠ABC=60°,則四邊形EFGH的面積為__cm2.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com