經(jīng)過(guò)點(diǎn)A(-4,5)的拋物線(xiàn)y=-x2+bx+5與y軸交于點(diǎn)B.點(diǎn)M在拋物線(xiàn)的對(duì)稱(chēng)軸上,點(diǎn)N在拋物線(xiàn)上,且以A,B,M,N為頂點(diǎn)的四邊形是平行四邊形.則點(diǎn)N的坐標(biāo)為   
【答案】分析:將點(diǎn)A(-4,5)代入拋物線(xiàn)y=-x2+bx+5,先求出拋物線(xiàn)的解析式,從而求出y軸交點(diǎn)B的坐標(biāo),拋物線(xiàn)的對(duì)稱(chēng)軸,再根據(jù)平行線(xiàn)的性質(zhì)求出點(diǎn)N的坐標(biāo).
解答:解:∵點(diǎn)A(-4,5)在拋物線(xiàn)y=-x2+bx+5上,
∴5=-(-4)2-4b+5,解得b=-4.
∴拋物線(xiàn)的解析式為y=-x2-4x+5=-(x+2)2+9,
∴拋物線(xiàn)的對(duì)稱(chēng)軸為x=-2,
∵拋物線(xiàn)y=-x2+bx+5與y軸交于點(diǎn)B,
∴點(diǎn)B的坐標(biāo)為(0,5).
∵以A,B,M,N為頂點(diǎn)的四邊形是平行四邊形.
而點(diǎn)A與點(diǎn)B的距離是4,
∴點(diǎn)N的橫坐標(biāo)可為2或-6,或點(diǎn)N的縱坐標(biāo)可為9,
∴點(diǎn)N的坐標(biāo)為(2,-7)或(-6,-7)或(-2,9).
點(diǎn)評(píng):本題難度較大,考查了待定系數(shù)法求拋物線(xiàn)的解析式,函數(shù)圖象上的點(diǎn)的坐標(biāo)與函數(shù)解析式的關(guān)系,坐標(biāo)系的對(duì)稱(chēng)及平行四邊形的性質(zhì).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

若反比例函數(shù)y=
k
x
(k<0)的圖象經(jīng)過(guò)點(diǎn)(-2,a),(-1,b),(3,c),則a,b,c的大小關(guān)系為( 。
A、c>a>b
B、b>a>c
C、a>b>c
D、c>b>a

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線(xiàn)頂點(diǎn)D (0,
1
8
),且經(jīng)過(guò)點(diǎn)A(1,
17
8
).
(1)求這條拋物線(xiàn)的解析式;
(2)點(diǎn)F是坐標(biāo)原點(diǎn)O關(guān)于該拋物線(xiàn)頂點(diǎn)的對(duì)稱(chēng)點(diǎn),坐標(biāo)為(0,
1
4
).我們可以用以下方法求線(xiàn)段FA的長(zhǎng)度;過(guò)點(diǎn)A作AA1⊥x軸,過(guò)點(diǎn)F作x軸的平行線(xiàn),交AA1于A2,則FA2=1,A2A=
17
8
-
1
4
=
15
8
,在Rt△AFA2中,有FA=
12+(
15
8
)2
=
17
8
.已知拋物線(xiàn)上另一點(diǎn)B的橫坐標(biāo)為2,求線(xiàn)段FB的長(zhǎng);
(3)若點(diǎn)P是該拋物線(xiàn)在第一象限上的任意一點(diǎn),試探究線(xiàn)段FP的長(zhǎng)度與點(diǎn)P縱坐標(biāo)的大小關(guān)系,并證明你的猜想.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知直線(xiàn)y=-x+2與x軸、y軸分別交于點(diǎn)A和點(diǎn)B,另已知直線(xiàn)y=kx+b(k≠0)經(jīng)過(guò)精英家教網(wǎng)點(diǎn)C(1,0),且把△AOB分成兩部分.
(1)若△AOB被分成的兩部分面積相等,求k和b的值;
(2)若△AOB被分成的兩部分面積比為1:5,求k和b的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知一次函數(shù)y=kx+b的圖象經(jīng)過(guò)點(diǎn)(-1,-5),且與函數(shù)y=
1
2
x+1
的圖象相交于點(diǎn)A(
8
3
,a)

(1)求a的值;
(2)求不等式組0<kx+b<
1
2
x+1
的正整數(shù)解;
(3)若函數(shù)y=kx+b圖象與x軸的交點(diǎn)是B,函數(shù)y=
1
2
x+1
的圖象與y軸的交點(diǎn)是C,求四邊形ABOC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

直線(xiàn)y=kx+b經(jīng)過(guò)點(diǎn)A(0,1),B(-3,0),點(diǎn)P是這條直線(xiàn)上的一個(gè)動(dòng)點(diǎn),以P精英家教網(wǎng)為圓心的圓與x軸相切于點(diǎn)C.
(1)求直線(xiàn)AB的解析式;
(2)設(shè)點(diǎn)P的橫坐標(biāo)為t,若⊙P與y軸相切,求t的值;
(3)是否存在點(diǎn)P,使⊙P與y軸兩交點(diǎn)間的距離恰好等于2?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案