【題目】如圖,四邊形是一張放在平面直角坐標(biāo)系中的矩形紙片,點在軸上,點在軸上,將邊沿直線折疊,使點落在邊上的點處.
的大小 (度);
若,用含的代數(shù)式表示.則
在的條件下,已知折痕的長為,求點的坐標(biāo).
【答案】(1)90°;(2)5k,5k;(3)點的坐標(biāo)為
【解析】
(1)利用折疊的性質(zhì):對應(yīng)角相等即可得出答案;
(2)在中,利用勾股定理得出的長度,進而得出的長度;
(3)設(shè),在中得出,在中得出,進而求出點的坐標(biāo)即可.
解:(1)∵邊沿直線折疊,使點落在邊上的點處,
∵由折疊的性質(zhì)可知:,
∵,
故答案為:;
(2)由題意可知:,
∴在中,由勾股定理得:,即:,
解得:,
由折疊的性質(zhì)可知:,
∴,
故答案為:;
設(shè)
四邊形是矩形,
,
,,
由折疊后點與點重合,由折疊的性質(zhì)可知:,
在中,由勾股定理得:
即:,解得:,
在中,由勾股定理得:,即:,
解得,
,
點的坐標(biāo)為.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為弘揚中華傳統(tǒng)文化,某校組織八年級名學(xué)生參加漢字聽寫大賽.為了解學(xué)生整體聽寫能力,從中抽取部分學(xué)生的成績(得分取正整數(shù),滿分為分)進行統(tǒng)計分析,得到如下所示的頻數(shù)分布表:
分?jǐn)?shù)段 | |||||
頻數(shù) | |||||
所占百分比 |
請根據(jù)尚未完成的表格,解答下列問題:
(1)本次抽樣調(diào)查的樣本容量為___ _,表中_ , _;
(2)補全如圖所示的頻數(shù)分布直方圖;
(3)若成績超過分為優(yōu)秀,則該校八年級學(xué)生中漢字聽寫能力優(yōu)秀的約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知反比例函數(shù)的圖像與一次函數(shù)的圖像的一個交點的橫坐標(biāo)是-3.
(1)求的值,并畫出這個反比例函數(shù)的圖像;
(2)根據(jù)反比例函數(shù)的圖像,寫出當(dāng)時,的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長為6的等邊△ABC中,AD是BC邊上的中線,點E是△ABC內(nèi)一個動點,且DE=2,將線段AE繞點A逆時針旋轉(zhuǎn)60°得到AF,則DF的最小值是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了解“陽光體育”活動的開展情況,從全校2000名學(xué)生中,隨機抽取部分學(xué)生進行問卷調(diào)查(每名學(xué)生只能填寫一項自己喜歡的活動項目),并將調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計圖.
根據(jù)以上信息,解答下列問題:
(1)被調(diào)查的學(xué)生共有 人,并補全條形統(tǒng)計圖;
(2)在扇形統(tǒng)計圖中,m= ,n= ,表示區(qū)域C的圓心角為 度;
(3)全校學(xué)生中喜歡籃球的人數(shù)大約有 。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在矩形ABCD中,AB=4,BC=10,E是直線AD上任意一點(不與點A重合),點A關(guān)于直線BE的對稱點為A′,AA′所在直線與直線BC交于點F.
(1)如圖①,當(dāng)點E在線段AD上時,①若△ABE ∽△DEC,求AE的長;
②設(shè)AE=x,BF=y,求y與x的函數(shù)表達(dá)式.
(2)線段DA′的取值范圍是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】北方某水果商店從南方購進一種水果,其進貨成本是每噸0.4萬元,根據(jù)市場調(diào)查這種水果在北方市場上的銷售量y(噸)與每噸的銷售價x(萬元)之間的函數(shù)關(guān)系如下圖所示:
(1)求出銷售量y與每噸銷售價x之間的函數(shù)關(guān)系式;
(2)如果銷售利潤為w(萬元),請寫出w與x之間的函數(shù)關(guān)系式;
(3)當(dāng)每噸銷售價為多少萬元時,銷售利潤最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點D在反比例函數(shù)y=的圖象上,過點D作x軸的平行線交y軸于點B(0,3),過點A(5,0)的直線y=kx+b與y軸于點C,且BD=OC,tan∠OAC=.
(1)求反比例函數(shù)y=和直線y=kx+b的解析式;
(2)連接CD,試判斷線段AC與線段CD的關(guān)系,并說明理由;
(3)點E為x軸上點A右側(cè)的一點,且AE=OC,連接BE交直線CA于點M,求∠BMC的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com