如圖,已知二次函數(shù)y=ax2-4x+c的圖象經(jīng)過點A(-1,-1)和點B(3,-9).
(1)求該二次函數(shù)的表達式;
(2)點P(m,m)與點Q均在該函數(shù)圖象上(其中m>0),且這兩點關(guān)于拋物線的對稱軸對稱,求m的值及點Q的坐標.[拋物線的頂點坐標:(-
b
2a
4ac-b2
4a
)
].
分析:(1)由二次函數(shù)y=ax2-4x+c的圖象經(jīng)過點A(-1,-1)和點B(3,-9),將A和B的坐標代入二次函數(shù)解析式中,得到關(guān)于a與c的二元一次方程組,求出方程組的解得到a與c的值,即可確定出二次函數(shù)的解析式;
(2)由P在二次函數(shù)圖象上,將x=m,y=m代入二次函數(shù)解析式中,得到關(guān)于m的方程,求出方程的解得到m的值,確定出P的坐標,然后求出二次函數(shù)的對稱軸,根據(jù)對稱性即可得到Q的坐標.
解答:解:(1)∵二次函數(shù)y=ax2-4x+c的圖象經(jīng)過點A(-1,-1)和點B(3,-9),
∴將A和B兩點代入二次函數(shù)解析式得:
a+4+c=-1①
9a-12+c=-9②
,
②-①得:8a-16=-8,解得:a=1,
將a=1代入①得:1+4+c=-1,解得:c=-6,
則二次函數(shù)解析式為y=x2-4x-6;

(2)∵P(m,m)拋物線圖象上,
∴將x=m,y=m代入拋物線解析式得:m=m2-4m-6,
解得:m1=6,m2=-1(m>0,故舍去),
則m=6,
∴P的坐標為(6,6),
又拋物線的對稱軸為x=2,Q與P關(guān)于x=2對稱,
則Q的坐標為(-2,6).
點評:此題考查了利用待定系數(shù)法求二次函數(shù)的解析式,以及二次函數(shù)圖象上點的坐標特征,熟練掌握待定系數(shù)法是解本題第一問的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

如圖,已知二次函數(shù)圖象的頂點坐標為C(1,1),直線y=kx+m的圖象與該二次函數(shù)的圖象交于A、B兩點,其中A點坐標為(
5
2
13
4
),B點在y軸上,直線與x軸的交點為F,P為線段AB上的一個動點(點P與A、B不重合),過P作x軸的垂線與這個二次函數(shù)的圖象交于E點.
(1)求k,m的值及這個二次函數(shù)的解析式;
(2)設線段PE的長為h,點P的橫坐標為x,求h與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(3)D為直線AB與這個二次函數(shù)圖象對稱軸的交點,在線段AB上是否存在點P,使得以點P、E、D為頂點的精英家教網(wǎng)三角形與△BOF相似?若存在,請求出P點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知二次函數(shù)y=ax2+bx+3(a≠0)的圖象與x軸交于點A(-1,0)和點B(3,0)兩點(點A在點B的左邊),與y軸交于點C.
(1)求此二次函數(shù)的解析式,并寫出它的對稱軸;
(2)若直線l:y=kx(k>0)與線段BC交于點D(不與點B,C重合),則是否存在這樣的直線l,使得以B,O,D為頂點的三角形與△BAC相似?若存在,求出點D的坐標;若不存在,請說明理由;
(3)若直線l′:y=m與該拋物線交于M、N兩點,且以MN為直徑的圓與x軸相切,求該圓半徑的長度.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知二次函數(shù)圖象的頂點坐標為C(1,0),直線y=x+b與該二次函數(shù)的圖象交于A、B兩點,其中點A的坐標為(3,4),點B在y軸上.點P為線段AB上的一個動點(點P與A、B不重合),過點P作x軸的垂線與該二次函數(shù)的圖象交于點E.
(1)求b的值及這個二次函數(shù)的關(guān)系式;
(2)設線段PE的長為h,點P的橫坐標為x,求h與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(3)若點D為直線AB與該二次函數(shù)的圖象對稱軸的交點,則四邊形DCEP能否構(gòu)成平行四邊形?如果能,請求出此時P點的坐標;如果不能,請說明理由.
(4)以PE為直徑的圓能否與y軸相切?如果能,請求出點P的坐標;如果不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知二次函數(shù)y=ax2-4x+c的圖象與坐標軸交于點A(-1,0)和點C(0,-5).
(1)求該二次函數(shù)的解析式和它與x軸的另一個交點B的坐標.
(2)在上面所求二次函數(shù)的對稱軸上存在一點P(2,-2),連接OP,找出x軸上所有點M的坐標,使得△OPM是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•衡水一模)如圖,已知二次函數(shù)y=-
12
x2+bx+c
的圖象經(jīng)過A(2,0)、B(0,-6)兩點.
(1)求這個二次函數(shù)的解析式;
(2)設該二次函數(shù)圖象的對稱軸與x軸交于點C,連接BA、BC,求△ABC的面積;
(3)若拋物線的頂點為D,在y軸上是否存在一點P,使得△PAD的周長最。咳舸嬖,求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案