【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,給下以下結(jié)論: ①2a﹣b=0;
②9a+3b+c<0;
③關(guān)于x的一元二次方程ax2+bx+c+3=0有兩個相等實數(shù)根;
④8a+c<0.
其中正確的個數(shù)是(

A.2
B.3
C.4
D.5

【答案】A
【解析】解:①∵拋物線的對稱軸為x=﹣ =1, ∴b=﹣2a,
∴2a﹣b=4a≠0,結(jié)論①不正確;②∵拋物線的對稱軸為x=1,當(dāng)x=﹣1時,y=ax2+bx+c<0,
∴當(dāng)x=3時,y=ax2+bx+c=9a+3b+c<0,結(jié)論②正確;③∵二次函數(shù)y=ax2+bx+c的圖象的頂點坐標(biāo)為(1,﹣3),
∴將二次函數(shù)y=ax2+bx+c圖象沿y軸正方向平移3個單位長度得到y(tǒng)=ax2+bx+c+3,且二次函數(shù)y=ax2+bx+c+3的圖象與x軸只有一個交點,
∴關(guān)于x的一元二次方程ax2+bx+c+3=0有兩個相等實數(shù)根,結(jié)論③正確;④當(dāng)x=﹣2時,y=ax2+bx+c=4a﹣2b+c>0,
∵b=﹣2a,
∴4a﹣2×(﹣2a)+c=8a+c>0,結(jié)論④不正確.
綜上所述:正確的結(jié)論有②③.
故選A.
【考點精析】解答此題的關(guān)鍵在于理解二次函數(shù)圖象以及系數(shù)a、b、c的關(guān)系的相關(guān)知識,掌握二次函數(shù)y=ax2+bx+c中,a、b、c的含義:a表示開口方向:a>0時,拋物線開口向上; a<0時,拋物線開口向下b與對稱軸有關(guān):對稱軸為x=-b/2a;c表示拋物線與y軸的交點坐標(biāo):(0,c),以及對拋物線與坐標(biāo)軸的交點的理解,了解一元二次方程的解是其對應(yīng)的二次函數(shù)的圖像與x軸的交點坐標(biāo).因此一元二次方程中的b2-4ac,在二次函數(shù)中表示圖像與x軸是否有交點.當(dāng)b2-4ac>0時,圖像與x軸有兩個交點;當(dāng)b2-4ac=0時,圖像與x軸有一個交點;當(dāng)b2-4ac<0時,圖像與x軸沒有交點.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市實施“農(nóng)業(yè)立市,工業(yè)強市,旅游興市”計劃后,2009年全市荔枝種植面積為24萬畝.調(diào)查分析結(jié)果顯示.從2009年開始,該市荔枝種植面積y(萬畝)隨著時間x(年)逐年成直線上升,y與x之間的函數(shù)關(guān)系如圖所示.
(1)求y與x之間的函數(shù)關(guān)系式(不必注明自變量x的取值范圍);
(2)該市2012年荔枝種植面積為多少萬畝?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,C的內(nèi)接△AOB中,AB=AO=4,tan∠AOB= ,拋物線y=ax2+bx經(jīng)過點A(4,0)與點(-2,6).

(1)求拋物線的函數(shù)解析式;
(2)直線m與C相切于點A,交y軸于點D,求證:AD//OB;
(3)在(2)的條件下,點P在線段OB上,從點O出發(fā)向點B運動;同時動點Q在線段DA上,從點D出發(fā)向點A運動;點P的速度為每秒1個單位長,點Q的速度為每秒2個單位長,當(dāng)PQ⊥AD時,求運動時間t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正△ABO的邊長為2,O為坐標(biāo)原點,A在 軸上,B在第二象限。△ABO沿 軸正方向作無滑動的翻滾,經(jīng)第一次翻滾后得△A1B1O,則翻滾3次后點B的對應(yīng)點的坐標(biāo)是;翻滾2017次后AB中點M經(jīng)過的路徑長為.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在銳角三角形ABC中,點D,E分別在邊AC,AB上,AG⊥BC于點G,AF⊥DE于點F,∠EAF=∠GAC.

(1)求證:△ADE∽△ABC;
(2)若AD=3,AB=5,求 的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在大樓AB的正前方有一斜坡CD,CD=4米,坡角∠DCE=30°,小紅在斜坡下的點C處測得樓頂B的仰角為60°,在斜坡上的點D處測得樓頂B的仰角為45°,其中點A、C、E在同一直線上.

(1)求斜坡CD的高度DE;
(2)求大樓AB的高度(結(jié)果保留根號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點A1 , A2在射線OA上,B1在射線OB上,依次作A2B2∥A1B1 , A3B2∥A2B1 , A3B3∥A2B2 , A4B3∥A3B2 , ….若△A2B1B2和△A3B2B3的面積分別為1、9,則△A1007B1007A1008的面積是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場有A,B兩種商品,若買2件A商品和1件B商品,共需80元;若買3件A商品和2件B商品,共需135元.
(1)設(shè)A,B兩種商品每件售價分別為a元、b元,求a、b的值;
(2)B商品每件的成本是20元,根據(jù)市場調(diào)查:若按(1)中求出的單價銷售,該商場每天銷售B商品100件;若銷售單價每上漲1元,B商品每天的銷售量就減少5件. ①求每天B商品的銷售利潤y(元)與銷售單價(x)元之間的函數(shù)關(guān)系?
②求銷售單價為多少元時,B商品每天的銷售利潤最大,最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖正方形ABCD的邊長為4,E、F分別為DC、BC中點.
(1)求證:△ADE≌△ABF.
(2)求△AEF的面積.

查看答案和解析>>

同步練習(xí)冊答案