在△ABC中,AB=AC=2,BD是AC邊上的高,且BD=,則∠ACB的度數(shù)是   
【答案】分析:△ABC是等腰三角形,作出底邊上的高,根據(jù)三角函數(shù)求角的度數(shù).
解答:解:∵△ABC中,AB=AC=2,BD是AC邊上的高,且BD=

∴sinA==,
∴∠A=60°或∠A=180°-60°=120°.
∴當∠A=60°時,
∠ACB=(180°-∠A)=(180°-60°)=60°;
∠A=120°時,
∠ACB=(180°-∠A)=(180°-120°)=30°.
點評:解答此題的關(guān)鍵是要注意∠A為銳角和鈍角兩種情況,不要漏解.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

(2013•寧德質(zhì)檢)如圖,在△ABC中,AB=AC=6,點0為AC的中點,OE⊥AB于點E,OE=
32
,以點0為圓心,OA為半徑的圓交AB于點F.
(1)求AF的長;
(2)連結(jié)FC,求tan∠FCB的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•襄陽)如圖,在△ABC中,AB=AC,AD⊥BC于點D,將△ADC繞點A順時針旋轉(zhuǎn),使AC與AB重合,點D落在點E處,AE的延長線交CB的延長線于點M,EB的延長線交AD的延長線于點N.
求證:AM=AN.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在△ABC中,AB=AC,把△ABC繞著點A旋轉(zhuǎn)至△AB1C1的位置,AB1交BC于點D,B1C1交AC于點E.求證:AD=AE.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•濱湖區(qū)一模)如圖,在△ABC中,AB是⊙O的直徑,∠B=60°,∠C=70°,則∠BOD的度數(shù)是(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•吉林)如圖,在△ABC中,AB=AC,D為邊BC上一點,以AB,BD為鄰邊作?ABDE,連接AD,EC.
(1)求證:△ADC≌△ECD;
(2)若BD=CD,求證:四邊形ADCE是矩形.

查看答案和解析>>

同步練習冊答案