【題目】如圖,在△中,,為斜邊上的中點(diǎn),連接,以為直徑作⊙,分別與、交于點(diǎn)、.過點(diǎn)作⊥,垂足為點(diǎn).
(1)求證:為⊙的切線;
(2)連接,若,,求的長.
【答案】(1)見解析(2)5
【解析】
(1)欲證明NE為⊙O的切線,只要證明ON⊥NE.
(2)想辦法證明四邊形DMCN是矩形即可解決問題.
(1)連接ON.
∵∠ACB=90°,D為斜邊的中點(diǎn),∴CD=DA=DBAB,∴∠BCD=∠B.
∵OC=ON,∴∠BCD=∠ONC,∴∠ONC=∠B,∴ON∥AB.
∵NE⊥AB,∴ON⊥NE,∴NE為⊙O的切線.
(2)由(1)得到:∠BCD=∠B,∴sin∠BCD=sin∠B.
∵NE=3,∴BN=5.
連接DN.
∵CD是⊙O的直徑,∴∠CND=90°,∴DN⊥BC,∴CN=BN=5,易證四邊形DMCN是矩形,∴MD=CN=BN=5.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】綜合實(shí)踐課上,某小組同學(xué)將直角三角形紙片放到橫線紙上(所有橫線都平行,且相鄰兩條平行線的距離為1),使直角三角形紙片的頂點(diǎn)恰巧在橫線上,發(fā)現(xiàn)這樣能求出三角形的邊長.
(1)如圖1,已知等腰直角三角形紙片△ABC,∠ACB=90°,AC=BC,同學(xué)們通過構(gòu)造直角三角形的辦法求出三角形三邊的長,則AB=__________;
(2)如圖2,已知直角三角形紙片△DEF,∠DEF=90°,EF=2DE,求出DF的長;
(3)在(2)的條件下,若橫格紙上過點(diǎn)E的橫線與DF相交于點(diǎn)G,直接寫出EG的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為落實(shí)“美麗撫順”的工作部署,市政府計(jì)劃對(duì)城區(qū)道路進(jìn)行了改造,現(xiàn)安排甲、乙兩個(gè)工程隊(duì)完成.已知甲隊(duì)的工作效率是乙隊(duì)工作效率的倍,甲隊(duì)改造360米的道路比乙隊(duì)改造同樣長的道路少用3天.
(1)甲、乙兩工程隊(duì)每天能改造道路的長度分別是多少米?
(2)若甲隊(duì)工作一天需付費(fèi)用7萬元,乙隊(duì)工作一天需付費(fèi)用5萬元,如需改造的道路全長1200米,改造總費(fèi)用不超過145萬元,至少安排甲隊(duì)工作多少天?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,內(nèi)接于⊙,是⊙的直徑,.平分交⊙于,交于點(diǎn),連接,若的面積是5,則的面積是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形中,,,以為圓心,為半徑作⊙,為⊙上一動(dòng)點(diǎn),連接.以為直角邊作,使,,則點(diǎn)與點(diǎn)的最小距離為____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以點(diǎn)A為中心,把△ABC逆時(shí)針旋轉(zhuǎn),得到△(點(diǎn)B、C的對(duì)應(yīng)點(diǎn)分別為點(diǎn)、C’),連接,若∥,則∠的度數(shù)為
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場銷售一種商品,若將50件該商品按標(biāo)價(jià)打八折銷售,比按原標(biāo)價(jià)銷售這些商品少獲利200元.
求該商品的標(biāo)價(jià)為多少元;
已知該商品的進(jìn)價(jià)為每件12元,根據(jù)市場調(diào)査:若按中標(biāo)價(jià)銷售,該商場每天銷售100件;每漲1元,每天要少賣5件那么漲價(jià)后要使該商品每天的銷售利潤最大,應(yīng)將銷售價(jià)格定為每件多少元?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與x軸相交于A,B兩點(diǎn),與y軸相交于點(diǎn)C,已知拋物線的對(duì)稱軸所在的直線是,點(diǎn)B的坐標(biāo)為
拋物線的解析式是______;
若點(diǎn)P是直線BC下方拋物線上一動(dòng)點(diǎn),當(dāng)時(shí),求出點(diǎn)P的坐標(biāo);
若M為x軸上一動(dòng)點(diǎn),在拋物線上是否存在點(diǎn)N,使得點(diǎn)B,C,M,N構(gòu)成的四邊形是菱形?若存在,求出N點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,E、F分別是AD、BC的中點(diǎn),,若,則下列結(jié)論:;;;若M是正方形內(nèi)任一點(diǎn),當(dāng)時(shí),的周長的最小值為;其中正確的結(jié)論
A. B. C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com