【題目】在平面直角坐標(biāo)系xOy中,反比例函數(shù)的圖象過點(diǎn)A(1,6).
(1)求反比例函數(shù)的表達(dá)式;
(2)過點(diǎn)A的直線與反比例函數(shù) 圖象的另一個(gè)交點(diǎn)為B,與x軸交于點(diǎn)P,若AP=2PB,求點(diǎn)P的坐標(biāo).
【答案】(1)y=;(2)P(﹣1,0).
【解析】
試題(1)把A點(diǎn)代入,根據(jù)待定系數(shù)法即可求得;
(2)作AC⊥x軸于C,BD⊥x軸于D,通過證得△APC∽△BPD,得出==2,求得B的縱坐標(biāo),代入解析式求得坐標(biāo),然后根據(jù)待定系數(shù)法求得直線AB的解析式,令y=0,即可求得P的坐標(biāo).
解:(1)∵反比例函數(shù)y=的圖象過點(diǎn)A(1,6),
∴k=1×6=6,
∴反比例函數(shù)的表達(dá)式為:y=;
(2)作AC⊥x軸于C,BD⊥x軸于D,
∵AC∥BD,
∴△APC∽△BPD,
∴=,
∵AP=2PB,
∴AC=2BD,
∵AC=6,
∴BD=3,
∴B的縱坐標(biāo)為﹣3,
代入y=得,﹣3=,解得x=﹣2,
∴B(﹣2,﹣3),
設(shè)直線AB的解析式為y=kx+b,
∴,解得,
∴直線AB的解析式為y=3x+3,
令y=0,則求得x=﹣1,
∴P(﹣1,0).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】鄂州市化工材料經(jīng)銷公司購(gòu)進(jìn)一種化工原料若干千克,價(jià)格為每千 克30元.物價(jià)部門規(guī)定其銷售單價(jià)不高于每千克60元,不低于每千克30元.經(jīng)市場(chǎng)調(diào)查發(fā)現(xiàn):日銷售量y(千克)是銷售單價(jià)x(元)的一次函數(shù),且當(dāng)x=60時(shí) ,y=80;x=50時(shí),y=100.在銷售過程中,每天還要支付其他費(fèi)用450元.
(1)(3分)求出y與x的函數(shù)關(guān)系式,并寫出自變量x的取值范圍.
(2)(3分)求該公司銷售該原料日獲利w(元)與銷售單價(jià)x(元)之間的函數(shù)關(guān)系式.
(3)(4分)當(dāng)銷售單價(jià)為多少元時(shí),該公司日獲利最大?最大獲利是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“滴滴出行”改變了傳統(tǒng)打車方式,最大化節(jié)省了司機(jī)與乘客雙方的資源與時(shí)間.該打車方式的總費(fèi)用由里程費(fèi)和耗時(shí)費(fèi)組成,其中里程費(fèi)按元公里計(jì)算,耗時(shí)費(fèi)按元分鐘計(jì)算.甲、乙兩乘客用該打車方式出行,按上述計(jì)價(jià)規(guī)則,其打車總費(fèi)用、行駛里程數(shù)與平均車速等信息如下表:
平均速度(公里/時(shí)) | 里程數(shù)(公里) | 車費(fèi)(元) | |
甲乘客 | |||
乙乘客 |
(1)求,的值;
(2)如果你采用“滴滴出行”的打車方式,保持平均車速公里時(shí),行駛了公里,那么你是否能夠計(jì)算出打車的總費(fèi)用?如果能,總費(fèi)用為多少元?如果不能,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場(chǎng)舉行開業(yè)酬賓活動(dòng),設(shè)立了兩個(gè)可以自由轉(zhuǎn)動(dòng)的轉(zhuǎn)盤(如圖所示,兩個(gè)轉(zhuǎn)盤均被等分),并規(guī)定:顧客購(gòu)買滿188元的商品,即可任選一個(gè)轉(zhuǎn)盤轉(zhuǎn)動(dòng)一次,轉(zhuǎn)盤停止后,指針?biāo)竻^(qū)域內(nèi)容即為優(yōu)惠方式;若指針?biāo)竻^(qū)域空白,則無優(yōu)惠.已知小張?jiān)谠撋虉?chǎng)消費(fèi)300元
(1)若他選擇轉(zhuǎn)動(dòng)轉(zhuǎn)盤1,則他能得到優(yōu)惠的概率為多少?
(2)選擇轉(zhuǎn)動(dòng)轉(zhuǎn)盤1和轉(zhuǎn)盤2,哪種方式對(duì)于小張更合算,請(qǐng)通過計(jì)算加以說明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,正方形DEFG的頂點(diǎn)D,G分別在AB,AC上,頂點(diǎn)E,F(xiàn)在BC上.若△ADG、△BED、△CFG的面積分別是1、3、1,則正方形的邊長(zhǎng)為( )
A. B. C. 2 D. 2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列命題的逆命題成立的有( )
①勾股數(shù)是三個(gè)正整數(shù) ②全等三角形的三條對(duì)應(yīng)邊分別相等
③如果兩個(gè)實(shí)數(shù)相等,那么它們的平方相等 ④平行四邊形的兩組對(duì)角分別相等
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形 ABCD 中,AD∥BC,DC⊥BC,將四邊形沿對(duì)角線 BD 折疊,點(diǎn) A 恰好落在 DC 邊上的 點(diǎn) A'處,若∠A'BC=20°,則∠A'BD 的度數(shù)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,平分.
(1)若為線段上的一個(gè)點(diǎn),過點(diǎn)作交線段的延長(zhǎng)線于點(diǎn).
①若,,則_______;
②猜想與、之間的數(shù)量關(guān)系,并給出證明.
(2)若在線段的延長(zhǎng)線上,過點(diǎn)作交直線于點(diǎn),請(qǐng)你直接寫出與、的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=kx+b與反比例函數(shù)y=(m≠0)的圖象交于點(diǎn)A(3,1),且過點(diǎn)B(0,﹣2).
(1)求反比例函數(shù)和一次函數(shù)的表達(dá)式;
(2)如果點(diǎn)P是x軸上一點(diǎn),且△ABP的面積是3,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com