如圖,在矩形ABCD中,E、F分別是邊AB、CD上的點,AE=CF,連接EF,BF,EF與對角線AC交于O點,且BE=BF,∠BEF=2∠BAC。

(1)求證:OE=OF;
(2)若BC=,求AB的長。
解:(1)證明:∵四邊形ABCD是矩形,∴DC∥AB。
∴∠OAE=∠OCF,∠OEA=∠OFC。
又∵AE=CF,∴△OEA≌△OFC(ASA)。
∴OE=OF。
(2)如圖,連接OB,

∵BE=BF,OE=OF,∴BO⊥EF,∠ABO=∠OBF。
∵∠BEF=2∠BAC,∴∠OBE=∠BAC。
又∵矩形ABCD中,∠ABC=900,∴∠BOE=∠ABC=900。
∴△OBE∽△BAC。∴。
∵∠BEF=2∠BAC,∴∠OAE=∠AOE。∴AE=OE。
設(shè)AB=x,AE=OE=y,則。
∵BC=,∴。
由(1)△OEA≌△OFC,得AO=CO,∴。
! ①。
又∵,即
化簡,得 ②。
由①②得,兩邊平方并化簡,得,
,∴根據(jù)x的實際意義,得x=6。
∴若BC=, AB的長為6。
(1)由矩形的性質(zhì),結(jié)合已知可根據(jù)ASA證出△OEA≌△OFC,從而得出結(jié)論
(2)連接OB,根據(jù)等腰三角形三線合一的性質(zhì)可得BO⊥EF,∠ABO=∠OBF,從而得到△OBE∽△BAC,設(shè)出未知數(shù)和參數(shù):AB=x,AE=OE=y,可得,在Rt△OBE中應(yīng)用勾股定理得,二者聯(lián)立,解出x即可。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,正方形ABCD的邊長是3,點P是直線BC上一點,連接PA,將線段PA繞點P逆時針旋轉(zhuǎn)90°得到線段PE,在直線BA上取點F,使BF=BP,且點F與點E在BC同側(cè),連接EF,CF.

(1)如圖①,當(dāng)點P在CB延長線上時,求證:四邊形PCFE是平行四邊形;
(2)如圖②,當(dāng)點P在線段BC上時,四邊形PCFE是否還是平行四邊形,說明理由;
(3)在(2)的條件下,四邊形PCFE的面積是否有最大值?若有,請求出面積的最大值及此時BP長;若沒有,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,將一張長為70cm的矩形紙片ABCD沿對稱軸EF折疊后得到如圖所示的形狀,若折疊后AB與CD的距離為60cm,則重疊部分四邊形較長邊的長度為(    )
A.20 cmB.15 cmC.10 cmD.cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖所示,在梯形ABCD中,AD∥BC,對角線AC⊥BD,且AC=12,BD=5,則這個梯形中位線的長等于   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖.在△ABC中,∠ACB=90°,CD⊥AB于D,AE平分∠BAC,分別于BC、CD交于E、F,EH⊥AB于H.連接FH,求證:四邊形CFHE是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在矩形ABCD中,AD=2AB,點M、N分別在邊AD、BC上,連接BM、DN,若四邊形MBND是菱形,則等于【   】

A.       B.       C.      D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,4×4的方格中每個小正方形的邊長都是1,則S四邊形ABCD與S四邊形ECDF的大小關(guān)系是
A.S四邊形ABCD=S四邊形ECDFB.S四邊形ABCD<S四邊形ECDF
C.S四邊形ABCD=S四邊形ECDF+1 D.S四邊形ABCD=S四邊形ECDF+2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在梯形ABCD中,AD∥BC,AB=CD=AD=5,∠B=60°,則BC=     

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

已知四邊形ABCD的兩條對角線AC與BD互相垂直,則下列結(jié)論正確的是
A.當(dāng)AC=BD時,四邊形ABCD是矩形
B.當(dāng)AB=AD,CB=CD時,四邊形ABCD是菱形
C.當(dāng)AB=AD=BC時,四邊形ABCD是菱形
D.當(dāng)AC=BD,AD=AB時,四邊形ABCD是正方形

查看答案和解析>>

同步練習(xí)冊答案