【題目】如圖,已知MB=ND,∠MBA=NDC,下列哪個條件不能判定ABM≌△CDN

A.AM=CNB.AB=CD C.AMCN D.M=N

【答案】A

【解析】

三角形全等的判定定理有:邊角邊、角角邊、角邊角和邊邊邊定理,逐項分析即可判斷;

解:A、MB=ND,AM=CN ,∠MBA=NDC,ABMCDN不一定全等,錯誤,符合題意;

B、∵MB=ND,AM=CN ,AB=CD ,∴ABM≌△CDNSSS), 正確,不符合題意;

C、∵ AMCN,∴∠A=NCD,又∠MBA=NDCMB=ND,∴ABM≌△CDAAS), 正確,不符合題意;

D、∵∠M=N,MB=ND,∠MBA=NDC,∴ABM≌△CDNASA),正確,不符合題意;

故答案為:A.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】一架方梯AB長25米,如圖所示,斜靠在一面上:

(1)若梯子底端離墻7米,這個梯子的頂端距地面有多高?

(2)在(1)的條件下,如果梯子的頂端下滑了4米,那么梯子的底端在水平方向滑動了幾米?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了美化環(huán)境,建設(shè)宜居成都,我市準備在一個廣場上種植甲、乙兩種花卉,經(jīng)市場調(diào)查,甲種花卉的種植費用y(元)與種植面積xm2)之間的函數(shù)關(guān)系如圖所示,乙種花卉的種植費用為每平方米100元.

1)直接寫出當0≤x≤300x300時,yx的函數(shù)關(guān)系式;

2)廣場上甲、乙兩種花卉的種植面積共1200m2,若甲種花卉的種植面積不少于200m2,且不超過乙種花卉種植面積的2倍,那么應(yīng)該怎樣分配甲、乙兩種花卉的種植面積才能使種植總費用最少?最少總費用為多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一輛出租車從超市(點)出發(fā),向東走到達小李家(點),繼續(xù)向東走到達小張家(點),然后又回頭向西走到達小陳家(點),最后回到超市.

1)以超市為原點,向東方向為正方向,用表示,畫出數(shù)軸,并在該數(shù)軸上表示、、的位置;

2)小陳家(點)距小李家(點)有多遠?

3)若出租車收費標準如下,以內(nèi)包括收費元,超過部分按每千米元收費,則從超市出發(fā)到回到超市一共花費多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】臺風是一種自然災(zāi)害,它以臺風中心為圓心,在周圍數(shù)十千米范圍內(nèi)形氣旋風暴,有極強的破壞力,此時某臺風中心在海域B處,在沿海城市A的正南方向240千米,其中心風力為12級,每遠離臺風中心25千米,臺風就會減弱一級,如圖所示,該臺風中心正以20千米/時的速度沿北偏東30°方向向C移動,且臺風中心的風力不變,若城市所受風力達到或超過4級,則稱受臺風影響. 試問:

(1)A城市是否會受到臺風影響?請說明理由.

(2)若會受到臺風影響,那么臺風影響該城市的持續(xù)時間有多長?

(3)該城市受到臺風影響的最大風力為幾級?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某花店準備購進甲、乙兩種花卉,若購進甲種花卉20盆,乙種花卉50盆,需要900元;若購進甲種花卉40盆,乙種花卉30盆,需要960元.

(1)求購進甲、乙兩種花卉每盆各需多少元?

(2)該花店購進甲,乙兩種花卉共100盆,甲種花卉每盆售價20元,乙種花齊每盆售價16元,現(xiàn)該花店把100盆花卉全部售出,若獲利超過480元,則至少購進甲種花卉多少盆?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在正方形ABCD中,連接BD.
(1)如圖1,AE⊥BD于E.直接寫出∠BAE的度數(shù).

(2)如圖1,在(1)的條件下,將△AEB以A旋轉(zhuǎn)中心,沿逆時針方向旋轉(zhuǎn)30°后得到△AB′E′,AB′與BD交于M,AE′的延長線與BD交于N.
①依題意補全圖1;
②用等式表示線段BM、DN和MN之間的數(shù)量關(guān)系,并證明.
(3)如圖2,E、F是邊BC、CD上的點,△CEF周長是正方形ABCD周長的一半,AE、AF分別與BD交于M、N,寫出判斷線段BM、DN、MN之間數(shù)量關(guān)系的思路.(不必寫出完整推理過程)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知一次函數(shù)y=kx+b與反比例函數(shù)y= 交于A(﹣1,2),B(2,n),與y軸交于C點.
(1)求反比例函數(shù)和一次函數(shù)解析式;
(2)如圖1,若將y=kx+b向下平移,使平移后的直線與y軸交于F點,與雙曲線交于D,E兩點,若SABD=3,
求D,E的坐標.

(3)如圖2,P為直線y=2上的一個動點,過點P作PQ∥y軸交直線AB于Q,交雙曲線于R,若QR=2QP,求P點坐標.

查看答案和解析>>

同步練習冊答案