【題目】如圖,在數(shù)軸上有兩點(diǎn)A、B,點(diǎn)B在點(diǎn)A的右側(cè),且AB10,點(diǎn)A表示的數(shù)為﹣6.動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以每秒4個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸向右勻速運(yùn)動(dòng).

(1)寫出數(shù)軸上點(diǎn)B表示的數(shù);

(2)經(jīng)過多少時(shí)間,線段APBP的長(zhǎng)度之和為18?

【答案】(1)點(diǎn)B表示的數(shù)為4(2)經(jīng)過3.5s,線段APBP的長(zhǎng)度之和為18.

【解析】

(1)利用兩點(diǎn)間的距離表示即可;

(2)利用兩點(diǎn)間的距離表示AP,BP的長(zhǎng)度,在根據(jù)線段APBP的長(zhǎng)度之和為18列出方程,即可算出時(shí)間

(1)設(shè)B對(duì)應(yīng)的數(shù)為:a,a(6)10,a4

數(shù)軸上點(diǎn)B表示的數(shù)為4.

(2)設(shè):經(jīng)過t秒時(shí)間,線段APBP的長(zhǎng)度之和為18.

AP4t,

(i)PAB之間時(shí):AP+BP10不可能為18

(ii)PB的右側(cè):BP4t10,4t+4t1018,

t3.5,

答:經(jīng)過3.5s,線段APBP的長(zhǎng)度之和為18.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在四邊形ABCD中,如果對(duì)角線ACBD相交并且相等,那么我們把這樣的四邊形稱為等角線四邊形.

(1)①在“平行四邊形、矩形、菱形”中, 一定是等角線四邊形(填寫圖形名稱);

M、N、P、Q分別是等角線四邊形ABCD四邊ABBC、CDDA的中點(diǎn),當(dāng)對(duì)角線AC、BD還要滿足 時(shí),四邊形MNPQ是正方形.

(2)如圖2,已知ABC中,ABC=90°,AB=4,BC=3,D為平面內(nèi)一點(diǎn).

若四邊形ABCD是等角線四邊形,且AD=BD,則四邊形ABCD的面積是 ;

設(shè)點(diǎn)E是以C為圓心,1為半徑的圓上的動(dòng)點(diǎn),若四邊形ABED是等角線四邊形,寫出四邊形ABED面積的最大值,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,已知拋物線y軸交于點(diǎn)A(0,﹣4),與x軸相交于B(﹣2,0)、C(4,0)兩點(diǎn),O為坐標(biāo)原點(diǎn).

(1)求拋物線的解析式;

(2)設(shè)點(diǎn)Ex軸上,∠OEA+OAB=ACB,求BE的長(zhǎng);

(3)如圖2,將拋物線y=ax2+bx+c向右平移nn>0)個(gè)單位得到的新拋物線與x軸交于M、NMN左側(cè)),Px軸下方的新拋物線上任意一點(diǎn),連PMPN,過PPQMNQ是否為定值?請(qǐng)說明理由.

1 2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知邊長(zhǎng)為3的正方形ABCD中,點(diǎn)E在射線BC上,且BE=2CE,連接AE交射線DC于點(diǎn)F,若ABE沿直線AE翻折,點(diǎn)B落在點(diǎn)B1處.

(1)如圖1,若點(diǎn)E在線段BC上,求CF的長(zhǎng);

(2)求sinDAB1的值;

(3)如果題設(shè)中“BE=2CE”改為=x”,其它條件都不變,試寫出ABE翻折后與正方形ABCD公共部分的面積yx的關(guān)系式及自變量x的取值范圍(只要寫出結(jié)論,不需寫出解題過程).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有一種節(jié)能型轎車的油箱加滿天然氣后,油箱中的剩余天然氣量(升)與轎車行駛路程(千米)之間的關(guān)系如圖所示,根據(jù)圖象回答下列問題:

1)這種轎車的油箱最多能裝______升天然氣,加滿天然氣后可供轎車行駛______千米.

2)轎車每行駛200千米消耗天然氣________.

3)寫出之間的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某地的一種綠色蔬菜,在市場(chǎng)上若直接銷售,每噸利潤(rùn)為1000元,經(jīng)粗加工后銷售,每噸利潤(rùn)4000元,經(jīng)精加工后銷售, 每噸利潤(rùn)為7000元.當(dāng)?shù)匾患夜粳F(xiàn)有這種蔬菜140噸,該公司加工廠的生產(chǎn)能力是:如果對(duì)蔬菜進(jìn)行粗加工,每天可加工16噸, 如果對(duì)蔬菜進(jìn)行精加工,每天可加工6噸,但每天兩種方式不能同時(shí)進(jìn)行.受季節(jié)等條件的限制,必須用15天時(shí)間將這批蔬菜全部銷售或加工完畢.為此,公司研制了三種方案:

方案1:將蔬菜全部進(jìn)行粗加工;

方案2:盡可能地對(duì)蔬菜進(jìn)行精加工,沒來得及加工的蔬菜,在市場(chǎng)上直接出售;

方案3:將一部分蔬菜進(jìn)行精加工, 其余蔬菜進(jìn)行粗加工,并剛好15天完成.

如果你是公司經(jīng)理,你會(huì)選擇哪一種方案? 請(qǐng)通過計(jì)算說明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】正方形ABCD的邊長(zhǎng)為4,EBC邊上一點(diǎn),BE=3,M為線段AE上一點(diǎn),射線BM交正方形的一邊于點(diǎn)F,且BF=AE,BM的長(zhǎng)為____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)EF分別為菱形ABCDAD、CD的中點(diǎn).

1)求證:BE=BF;

2)當(dāng)△BEF為等邊三角形時(shí),求證:∠D=2A.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】釣魚島是我國固有領(lǐng)土,現(xiàn)在我邊海漁民要在釣魚島附近進(jìn)行捕魚作業(yè),當(dāng)漁船航行至B處時(shí),測(cè)得該島位于正北方向20(1+)海里的C處,為了防止某國海警干擾,請(qǐng)求我A處的魚監(jiān)船前往C處護(hù)航,已知C位于A處的北偏東45°方向,A位于B的北偏西30°方向,求A、C之間的距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案