【題目】如圖,ABC為等腰直角三角形,∠BCA90°ACBC,點(diǎn)M、N在斜邊AB上,且∠MCN45°,試探究線段AM,,MNBN之間的關(guān)系,并說明理由。.

【答案】見解析

【解析】

如圖,過點(diǎn)AADAB,且AD=BN.只要證明ADC≌△BNC,推出CD=CN,∠ACD=BCN,再證明MDC≌△MNC,可得MD=MN,由此即可解決問題.

解:BN2+AM2MN2.理由如下:

如圖,過點(diǎn)AADAB,且ADBN,

ADBN,∠DAC=∠B45°,ACBC

∴△ADC≌△BNC,

CDCN,∠ACD=∠BCN,

∵∠MCN45°,

∴∠DCA+ACM=∠ACM+BCN45°

∴∠MCD=∠NCM,

∴△MDC≌△MNCSAS),

MDMN,

RtMDA中,AD2+AM2DM2

BN2+AM2MN2.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在數(shù)軸上每相鄰兩點(diǎn)間的距離為一個(gè)單位長度.點(diǎn)A、B、CD對應(yīng)的數(shù)分別是a、b、c、d,且d3a20

1a   ,b   ,c   

2)點(diǎn)A2個(gè)單位/秒的速度沿著數(shù)軸的正方向運(yùn)動,1秒后點(diǎn)B4個(gè)單位/秒的速度也沿著數(shù)軸的正方向運(yùn)動.當(dāng)點(diǎn)B到達(dá)D點(diǎn)處立刻返回,返回時(shí),點(diǎn)A與點(diǎn)B在數(shù)軸的某點(diǎn)處相遇,求這個(gè)點(diǎn)對應(yīng)的數(shù).

3)如果A、C兩點(diǎn)分別以2個(gè)單位/秒和3個(gè)單位/秒的速度同時(shí)向數(shù)軸的負(fù)方向運(yùn)動,同時(shí),點(diǎn)B從圖上的位置出發(fā)向數(shù)軸的正方向以1個(gè)單位/秒的速度運(yùn)動,當(dāng)滿足AB+ACAD時(shí),點(diǎn)A對應(yīng)的數(shù)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,Am,0),Bn,0),C(﹣1,2),且滿足式|m+2|+m+n220

1)求出m,n的值.

2)①在x軸的正半軸上存在一點(diǎn)M,使COM的面積等于ABC的面積的一半,求出點(diǎn)M的坐標(biāo);

②在坐標(biāo)軸的其它位置是否存在點(diǎn)M,使COM的面積等于ABC的面積的一半仍然成立,若存在,請直接在所給的橫線上寫出符合條件的點(diǎn)M的坐標(biāo);

3)如圖2,過點(diǎn)CCDy軸交y軸于點(diǎn)D,點(diǎn)P為線段CD延長線上一動點(diǎn),連接OP,OE平分∠AOP,OFOE,當(dāng)點(diǎn)P運(yùn)動時(shí),的值是否會改變?若不變,求其值;若改變,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在長度為1個(gè)單位長度的小正方形組成的正方形中,點(diǎn)AB、C在小正方形的頂點(diǎn)上.

1)在圖中畫出與ABC關(guān)于直線l成軸對稱的ABC

2)三角形ABC的面積為   ;

3)以AC為邊作與ABC全等的三角形(頂點(diǎn)在格點(diǎn)上,不包括ABC),可作出   個(gè);

4)在直線l上找一點(diǎn)P,使PA+PB的長最短.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知⊙O的弦CD與直徑AB垂直于F,點(diǎn)ECD上,且AE=CE.

(1)求證:CA2=CE CD;

(2)已知CA=5,EC=3,求sinEAF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,RtABC,C=90°,OAB上一點(diǎn),OBC相切于點(diǎn)E,AB于點(diǎn)F,連接AE,AF=2BF,則∠CAE的度數(shù)是__.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,中,的平分線交于點(diǎn),過點(diǎn)于點(diǎn),交于點(diǎn),那么下列結(jié)論,①是等腰三角形;②;③若, ; .其中正確的有(

A. 1個(gè)B. 2個(gè)C. 3個(gè)D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,四邊形OABC是正方形,點(diǎn)A的坐標(biāo)是(4,0),P為邊AB上一點(diǎn),∠CPB=60°,沿CP折疊正方形OABC,折疊后,點(diǎn)B落在平面內(nèi)的點(diǎn)B′處,則點(diǎn)B′的坐標(biāo)為(  )

A. (2,2) B. (,2-) C. (2,4-2) D. (,4-2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,有一座拋物線形拱橋,在正常水位時(shí)水面AB的寬為20m,如果水位上升3m時(shí),水面CD的寬是10m

1)建立如圖所示的直角坐標(biāo)系,求此拋物線的解析式;

2)現(xiàn)有一輛載有救援物資的貨車從甲地出發(fā)需經(jīng)過此橋開往乙地,已知甲地距此橋280km(橋長忽略不計(jì)).貨車正以每小時(shí)40km的速度開往乙地,當(dāng)行駛1小時(shí)時(shí),忽然接到緊急通知:前方連降暴雨,造成水位以每小時(shí)0.25m的速度持續(xù)上漲(貨車接到通知時(shí)水位在CD處,當(dāng)水位達(dá)到橋拱最高點(diǎn)O時(shí),禁止車輛通行),試問:如果貨車按原來速度行駛,能否安全通過此橋?若能,請說明理由;若不能,要使貨車安全通過此橋,速度應(yīng)超過每小時(shí)多少千米?

查看答案和解析>>

同步練習(xí)冊答案