【題目】如圖,△ABC中,AB=AC,AD是∠BAC的角平分線,點(diǎn)O為AB的中點(diǎn),連接DO并延長(zhǎng)到點(diǎn)E,使OE=OD,連接AE,BE.
(1)求證:四邊形AEBD是矩形;
(2)當(dāng)△ABC滿足什么條件時(shí),矩形AEBD是正方形,并說(shuō)明理由.
【答案】證明(1):∵點(diǎn)O為AB的中點(diǎn),連接DO并延長(zhǎng)到點(diǎn)E,使OE=OD,
∴四邊形AEBD是平行四邊形,
∵AB=AC,AD是∠BAC的角平分線,
∴AD⊥BC,
∴∠ADB=90°,
∴平行四邊形AEBD是矩形;
(2)當(dāng)∠BAC=90°時(shí),
理由:∵∠BAC=90°,AB=AC,AD是∠BAC的角平分線,
∴AD=BD=CD,
∵由(1)得四邊形AEBD是矩形,
∴矩形AEBD是正方形.
【解析】(1)利用平行四邊形的判定首先得出四邊形AEBD是平行四邊形,進(jìn)而由等腰三角形的性質(zhì)得出∠ADB=90°,即可得出答案;
(2)利用等腰直角三角形的性質(zhì)得出AD=BD=CD,進(jìn)而利用正方形的判定得出即可.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】關(guān)于x的一元二次方程(a-1)x2-2x+1=0有實(shí)數(shù)根,則a的取值范圍是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)把一個(gè)雙肩背書包按進(jìn)價(jià)提高50%標(biāo)價(jià),然后再按八折出售,這樣商場(chǎng)每賣出一個(gè)書包就可盈利8元.設(shè)每個(gè)雙肩背書包的進(jìn)價(jià)是x元,根據(jù)題意列一元一次方程為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的方程(a2-1)x2+(1-a)x+a-2=0,下列結(jié)論正確的是( )
A. 當(dāng)a≠±1時(shí),原方程是一元二次方程。
B. 當(dāng)a≠1時(shí),原方程是一元二次方程。
C. 當(dāng)a≠-1時(shí),原方程是一元二次方程。
D. 原方程是一元二次方程。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD中,對(duì)角線AC與BD相交于點(diǎn)O,P為AD上的動(dòng)點(diǎn),過(guò)點(diǎn)P作PM⊥AC,PN⊥BD,垂足分別為M、N,若AB=m,BC=n,則PM+PN=( 。
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小康在小樂(lè)的南偏東30°方位,則小樂(lè)在小康的( )方位
A. 南偏東30° B. 南偏東60° C. 北偏西30° D. 北偏西60°
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com