【題目】如圖,拋物線yax2+4x+ca≠0)與反比例函數(shù)y的圖象相交于點(diǎn)B,且點(diǎn)B的橫坐標(biāo)為5,拋物線與y軸交于點(diǎn)C0,6),A是拋物線的頂點(diǎn),PQ分別是x軸和y軸上的兩個(gè)動(dòng)點(diǎn),則AQ+QP+PB的最小值為_____

【答案】

【解析】

根據(jù)題意求得B的坐標(biāo),然后根據(jù)待定系數(shù)法求得拋物線的解析式,從而求得頂點(diǎn)A的坐標(biāo),求得A關(guān)于y軸的對(duì)稱(chēng)點(diǎn)A′-2,10),B點(diǎn)關(guān)于x軸的對(duì)稱(chēng)點(diǎn)B′為(5,-1),根據(jù)兩點(diǎn)之間線段最短,即可判斷AQ+QP+PB=A′B′AQ+QP+PB的最小值,利用勾股定理求得即可.

∵點(diǎn)B在反比例函數(shù)y的圖象,且點(diǎn)B的橫坐標(biāo)為5,

∴點(diǎn)B的縱坐標(biāo)為:y1

B5,1),

∵拋物線yax2+4x+ca≠0)與反比例函數(shù)y的圖象相交于點(diǎn)B,與y軸交于點(diǎn)C0,6),

,解得,

∴拋物線為y=﹣x2+4x+6,

y=﹣x2+4x+6=﹣(x22+10,

A2,10),

A關(guān)于y軸的對(duì)稱(chēng)點(diǎn)A(﹣2,10),

B5,1),

B點(diǎn)關(guān)于x軸的對(duì)稱(chēng)點(diǎn)B為(51),

連接ABx軸于P,交y軸于Q,此時(shí)AQ+QP+PB的值最小,即AQ+QP+PBAB,

AB

AQ+QP+PB的最小值為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,頂點(diǎn)為(1,4)的拋物線與直線交于點(diǎn)A(2,2),直線軸交于點(diǎn)B與軸交于點(diǎn)C

(1)的值及拋物線的解析式

(2)P為拋物線上的點(diǎn),點(diǎn)P關(guān)于直線AB的對(duì)稱(chēng)軸點(diǎn)在軸上,求點(diǎn)P的坐標(biāo)

(3)點(diǎn)D軸上方拋物線上的一點(diǎn),點(diǎn)E為軸上一點(diǎn),以A B、ED為頂點(diǎn)的四邊為平行四邊形時(shí),直接寫(xiě)出點(diǎn)E的坐標(biāo)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一次數(shù)學(xué)綜合實(shí)踐活動(dòng)中,小明計(jì)劃測(cè)量城門(mén)大樓的高度,在點(diǎn)B處測(cè)得樓頂A的仰角為22°,他正對(duì)著城樓前進(jìn)21米到達(dá)C處,再登上3米高的樓臺(tái)D處,并測(cè)得此時(shí)樓頂A的仰角為45°

1)求城門(mén)大樓的高度;

2)每逢重大節(jié)日,城門(mén)大樓管理處都要在A,B之間拉上繩子,并在繩子上掛一些彩旗,請(qǐng)你求出A,B之間所掛彩旗的長(zhǎng)度(結(jié)果保留整數(shù)).(參考數(shù)據(jù):sin22°≈cos22°≈,tan22°≈

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我市某蔬菜生產(chǎn)基地在氣溫較低時(shí),用裝有恒溫系統(tǒng)的大棚栽培一種在自然光照且溫度為18的條件下生長(zhǎng)最快的新品種.圖是某天恒溫系統(tǒng)從開(kāi)啟到關(guān)閉及關(guān)閉后,大棚內(nèi)溫度y()隨時(shí)間x(小時(shí))變化的函數(shù)圖象,其中BC段是雙曲線的一部分.請(qǐng)根據(jù)圖中信息解答下列問(wèn)題:

(1)恒溫系統(tǒng)在這天保持大棚內(nèi)溫度18的時(shí)間有多少小時(shí)?

(2)求k的值;

(3)當(dāng)x=16時(shí),大棚內(nèi)的溫度約為多少度?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法正確的是(

A.25人中至少有3人的出生月份相同

B.任意拋擲一枚均勻的1元硬幣,若上一次正面朝上,則下一次一定反面朝上

C.天氣預(yù)報(bào)說(shuō)明天降雨的概率為10%,則明天一定是晴天

D.任意拋擲一枚均勻的骰子,擲出的點(diǎn)數(shù)小于3的概率是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知正方形ABCD的邊長(zhǎng)為6,EF分別是AB、BC邊上的點(diǎn),且∠EDF=45°,將DAE繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)90°,得到DCM

(1)求證:EF=MF

(2)AE=2,求FC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(2016青海省西寧市)如圖,點(diǎn)A的坐標(biāo)為(0,1),點(diǎn)Bx軸正半軸上的一動(dòng)點(diǎn),以AB為邊作等腰直角ABC,使BAC=90°,設(shè)點(diǎn)B的橫坐標(biāo)為x,點(diǎn)C的縱坐標(biāo)為y,能表示yx的函數(shù)關(guān)系的圖象大致是( 。

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】 如圖,AB為⊙O的直徑,F為弦AC的中點(diǎn),連接OF并延長(zhǎng)交弧AC于點(diǎn)D,過(guò)點(diǎn)D作⊙O的切線,交BA的延長(zhǎng)線于點(diǎn)E,連接CD,OC

1)求證:ACDE;

2)若OA=AE,求證:AFO≌△CFD

3)若OA=AE=2,則四邊形ACDE的面積是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將一張面積為的大三角形紙片沿著虛線剪成三張小三角形紙片與一張平行四邊形紙片. 根據(jù)圖中標(biāo)示的長(zhǎng)度,平行四邊形紙片的面積為(

A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案