【題目】萬(wàn)州區(qū)中小學(xué)社會(huì)活動(dòng)實(shí)踐基地開展了人與社會(huì)、人與自然、人與自我的綜合實(shí)踐活動(dòng),其中高空項(xiàng)目能培養(yǎng)學(xué)生不怕困難,不畏艱險(xiǎn)的精神.在高空項(xiàng)目中有以下四個(gè)特色實(shí)踐活動(dòng):“A.合力制勝,B.空中斷橋,C.絕壁飛胎,D.天羅地網(wǎng)”.為了解學(xué)生最喜愛哪項(xiàng)綜合實(shí)踐活動(dòng),隨機(jī)抽取部分學(xué)生進(jìn)行問卷調(diào)查(每位學(xué)生只能選擇一項(xiàng)),將調(diào)查結(jié)果繪制成下面兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)結(jié)合圖中提供的信息回答下列問題:
(1)本次一共調(diào)查了 名學(xué)生,并補(bǔ)全條形統(tǒng)計(jì)圖;
(2)現(xiàn)有最喜愛A,B,C,D活動(dòng)項(xiàng)目的學(xué)生各一人,學(xué)校要從這四人中隨機(jī)選取兩人交流活動(dòng)體會(huì),請(qǐng)用列表或畫樹狀圖的方法求出恰好選取最喜愛C和D項(xiàng)目的兩位學(xué)生的概率.
【答案】(1)200,補(bǔ)圖見解析;(2).
【解析】
(1)用喜歡A項(xiàng)目的人數(shù)除以它所占的百分比得到調(diào)查的總?cè)藬?shù),再計(jì)算出喜歡C項(xiàng)目的人數(shù),然后補(bǔ)全條形統(tǒng)計(jì)圖;
(2)畫樹狀圖展示所有12種等可能的結(jié)果數(shù),找出恰好選取最喜愛C和D項(xiàng)目的兩位學(xué)生的結(jié)果數(shù),然后利用概率公式求解.
解:(1)20÷10%=200,
∴本次一共調(diào)查了200名學(xué)生;
∴C項(xiàng)目的人數(shù)為:200×25%=50(人),
補(bǔ)全條形統(tǒng)計(jì)圖為:
故答案為200;
(2)畫樹狀圖為:
共有12種等可能的結(jié)果數(shù),其中恰好選取最喜愛C和D項(xiàng)目的兩位學(xué)生的結(jié)果數(shù)為2,
所以恰好選取最喜愛C和D項(xiàng)目的兩位學(xué)生的概率=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,O為原點(diǎn),點(diǎn)A在第一象限,點(diǎn)B是x軸正半軸上一點(diǎn),∠OAB45°,雙曲線過(guò)點(diǎn)A,交AB于點(diǎn)C,連接OC,若OC⊥AB,則tan∠ABO的值是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于反比例函,下列說(shuō)法中不正確的是( )
A.點(diǎn)在它的圖象上
B.它的圖象在第一、三象限
C.當(dāng)時(shí),隨的增大而減小
D.如果點(diǎn)在它的圖象上,則點(diǎn)不在它的圖象上
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】知識(shí)背景:當(dāng)a>0且x>0時(shí),因?yàn)?/span>≥0,所以,從而≥(當(dāng)x=時(shí)取等號(hào)).
設(shè)函數(shù)=(>0,x>0),由上述結(jié)論可知,當(dāng)x=時(shí),該函數(shù)有最小值為.
應(yīng)用舉例:已知函數(shù)=x(x>0)與函數(shù)=(x>0),則當(dāng)x==2時(shí),=有最小值為=4.
解決問題:
(1)已知函數(shù)=(x>-3)與函數(shù)=(x>-3),當(dāng)x為何值時(shí),有最小值?最小值是多少?
(2)已知某設(shè)備租賃使用成本包含以下三部分:一是設(shè)備的安裝調(diào)試費(fèi)用,共490元;二是設(shè)備的租賃使用費(fèi)用,每天200元;三是設(shè)備的折舊費(fèi)用,它與使用天數(shù)的平方成正比,比例系數(shù)為0.001.若設(shè)該設(shè)備的租賃使用天數(shù)為x天,則當(dāng)x取何值時(shí),該設(shè)備平均每天的租賃使用成本最低?最低是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,MN是垂直于水平面的一棵樹,小馬(身高1.70米)從點(diǎn)A出發(fā),先沿水平方向向左走2米到達(dá)P點(diǎn)處,在P處測(cè)得大樹的頂端M的仰角為37°,再沿水平方向向左走8米到B點(diǎn),再經(jīng)過(guò)一段坡度i=4:3,坡長(zhǎng)為5米的斜坡BC到達(dá)C點(diǎn),然后再沿水平方向向左行走5米到達(dá)N點(diǎn)(A、B、C、N在同一平面內(nèi)),則大樹MN的高度約為( )(參考數(shù)據(jù):tan37°≈0.75,sin37°≈0.60)
A.7.8米B.9.7米C.12米D.13.7米
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,拋物線y=﹣x2+2x+3的圖象與x軸交于點(diǎn)A、B,與y軸交于點(diǎn)C,連接BC.
(1)求直線BC的解析式;
(2)如圖2,點(diǎn)P是拋物線在第一象限內(nèi)的一點(diǎn),作PQ∥y軸交BC于Q,當(dāng)線段PQ的長(zhǎng)度最大時(shí),在x軸上找一點(diǎn)M,使PM+CM的值最小,求PM+CM的最小值;
(3)拋物線的頂點(diǎn)為點(diǎn)E,連接AE,在拋物線上是否存在一點(diǎn)N,使得直線AN與直線AE的夾角為45度,若存在請(qǐng)直接寫出滿足條件的點(diǎn)N的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知點(diǎn)A(1,0),B(0,3),將△AOB繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°,得到△COD,設(shè)E為AD的中點(diǎn).
(1)判斷AB與CD的關(guān)系并證明;
(2)求直線EC的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,等腰中,,,且AC邊在直線a上,將繞點(diǎn)A順時(shí)針旋轉(zhuǎn)到位置①可得到點(diǎn),此時(shí);將位置①的三角形繞點(diǎn)順時(shí)針旋轉(zhuǎn)到位置②,可得到點(diǎn),此時(shí);將位置②的三角形繞點(diǎn)順時(shí)針旋轉(zhuǎn)到位置③,可得到點(diǎn),此時(shí) ________,…,按此規(guī)律繼續(xù)旋轉(zhuǎn),直至得到點(diǎn)為止,則________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若凸四邊形的兩條對(duì)角線所夾銳角為60°,我們稱這樣的凸四邊形為“完美四邊形”.
(1)①在“平行四邊形、梯形、菱形、正方形”中,一定不是“完美四邊形”的有 ;
②若矩形ABCD是“完美四邊形”,且AB=4,則BC= ;
(2)如圖1,“完美四邊形”ABCD內(nèi)接于⊙O,AC與BD相交于點(diǎn)P,且對(duì)角線AC為直徑,AP=1,PC=5,求另一條對(duì)角線BD的長(zhǎng);
(3)如圖2,平面直角坐標(biāo)系中,已知“完美四邊形”ABCD的四個(gè)頂點(diǎn)A(﹣3,0)、C (2,0),B在第三象限,D在第一象限,AC與BD交于點(diǎn)O,直線BD的斜率為,且四邊形ABCD的面積為15,若二次函數(shù)y=ax2+bx+c(a、b、c為常數(shù),且a≠0)的圖象同時(shí)經(jīng)過(guò)這四個(gè)頂點(diǎn),求a的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com