【題目】如圖,在中,,,點為邊上的一個動點(點不與點、點重合).以為頂點作,射線交邊于點,過點作交射線于點.
(1)求證:;
(2)當(dāng)平分時,求的長;
(3)當(dāng)是等腰三角形時,求的長.
【答案】(1)見解析;(2);(3)當(dāng)是等腰三角形時,的長11或或
【解析】
(1)根據(jù)題意證明即可求解;
(2)根據(jù)平分得到,再根據(jù)得到得到,從而得到,即可求解;
(3)過點作,垂足為,根據(jù)三線合一得到,由勾股定理得出,再得到,設(shè),則,,根據(jù)得到,再分①點在線段的延長線上, ②點在線段上,當(dāng)是等腰三角形進行討論求解.
(1)證明:
即
(2)平分,
又是公共角,
(3)過點作,垂足為
由勾股定理得出,
設(shè),則,,
①點在線段的延長線上,當(dāng)是等腰三角形時,存在以下三種情況:
1.,則
2.,則
3.,則
②點在線段上,當(dāng)是等腰三角形時,
是一個鈍角
只存在這種可能,則
,不符合題意,舍去
綜上所述,當(dāng)是等腰三角形時,的長11或或.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,,都是等腰直角三角形,,,,且,點在上,連接,.
(1)如果;
①求的值;
②若,是關(guān)于的方程的兩根,求;
(2)如圖2,將繞點逆時針旋轉(zhuǎn).
①在上方,與、、同一平面內(nèi)找一點,使四邊形的面積四邊形與四邊形的面積四邊形相等,并簡要說明尋找點的作法;
②若四邊形,直接寫出的長 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解某次“小學(xué)生書法比賽”的成績情況,隨機抽取了 30 名學(xué)生的成績進行統(tǒng)計,并將統(tǒng)計情況繪成如圖所示的頻數(shù)分布直方圖,己知成績 x(單位:分)均滿足“50≤x<100”.根據(jù)圖中信息回答下列問題:
(1)圖中 a 的值為 ;
(2)若繪制該樣本的扇形統(tǒng)計圖,則成績 x 在“80≤x<90”所對應(yīng)扇形的圓心角度數(shù) 為 度;
(3)此次比賽共有 1500 名學(xué)生參加,若將“x≥80”的成績記為“優(yōu)秀”,則獲得“優(yōu)秀”的學(xué)生大約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校舉行“漢字聽寫”比賽,每位學(xué)生聽寫漢字個,比賽結(jié)束后隨機抽查部分學(xué)生的聽寫結(jié)果,以下是根據(jù)抽查結(jié)果繪制的統(tǒng)計圖的一部分.
根據(jù)以上信息解決下列問題:
()在統(tǒng)計表中,__________,__________,并補全條形統(tǒng)計圖.
()扇形統(tǒng)計圖中“組”所對應(yīng)的圓心角的度數(shù)是__________.
()若該校共有名學(xué)生,如果聽寫正確的個數(shù)少于個定為不合格,請你估計這所學(xué)校本次比賽聽寫不合格的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形紙片ABCD中,AD=5,AB=3.若M為射線AD上的一個動點,將△ABM沿BM折疊得到△NBM.若△NBC是直角三角形.則所有符合條件的M點所對應(yīng)的AM長度的和為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】國防教育和素質(zhì)拓展期間,某天小明和小亮分別從校園某條路的A,B兩端同時相向出發(fā),當(dāng)小明和小亮第一次相遇時,小明覺得自己的速度太慢便決定提速至原速的倍,當(dāng)他到達B端后原地休息,小亮勻速到達A端后,立即按照原速返回B端(忽略掉頭時間).兩人相距的路程y(米)與小亮出發(fā)時間t(秒)之間的關(guān)系如圖所示,當(dāng)小明到達B端后,經(jīng)過_____秒,小亮回到B端.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】據(jù)統(tǒng)計,2016年底全球支付寶用戶數(shù)為4.5億,2018年底達到9億假設(shè)每年增長率相同,則按此速度增長,估計2019年底全球支付寶用戶可達(≈1.414)( 。
A.11.25億B.13.35億C.12.73億D.14億
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖甲,在△ABC中,∠ACB=90°,AC=4cm,BC=3cm.如果點P由點B出發(fā)沿BA方向向點A勻速運動,同時點Q由點A出發(fā)沿AC方向向點C勻速運動,它們的速度均為1cm/s.連接PQ,設(shè)運動時間為t(s)(0<t<4),解答下列問題:
(1)設(shè)△APQ的面積為S,當(dāng)t為何值時,S取得最大值?S的最大值是多少?
(2)如圖乙,連接PC,將△PQC沿QC翻折,得到四邊形PQP′C,當(dāng)四邊形PQP′C為菱形時,求t的值;′
(3)當(dāng)t為何值時,△APQ是等腰三角形?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com