【題目】如圖12,中,AB=3,BC=15,.點(diǎn)延長(zhǎng)線上一點(diǎn),過(guò)點(diǎn)于點(diǎn),設(shè)

1)如圖1,為何值時(shí),圓心落在上?若此時(shí)于點(diǎn),直接指出PEBC的位置關(guān)系;

2)當(dāng)時(shí),如圖2,交于點(diǎn),求的度數(shù),并通過(guò)計(jì)算比較弦與劣弧長(zhǎng)度的大小;

3)當(dāng)與線段只有一個(gè)公共點(diǎn)時(shí),直接寫(xiě)出的取值范圍.

【答案】1)當(dāng)x=9時(shí),圓心O落在AP上,PEBC;(2)∠CAP=45°,弦AP的長(zhǎng)度>劣弧長(zhǎng)度;(3x18

【解析】

1)由三角函數(shù)定義知:RtPBC中,tanPBC=tanDAB,設(shè)CP=4k,BP=3k,由勾股定理可求得BC,根據(jù)“直徑所對(duì)的圓周角是直角”可得PEAD,由此可得PEBC

2)作CGAB,運(yùn)用勾股定理和三角函數(shù)可求CGAG,再應(yīng)用三角函數(shù)求∠CAP,應(yīng)用弧長(zhǎng)公式求劣弧長(zhǎng)度,再比較它與AP長(zhǎng)度的大小;

3)當(dāng)⊙O與線段AD只有一個(gè)公共點(diǎn)時(shí),⊙OAD相切于點(diǎn)A,或⊙O與線段DA的延長(zhǎng)線相交于另一點(diǎn),此時(shí),BP有最小值,即x18

1)如圖1,AP經(jīng)過(guò)圓心O

CP與⊙O相切于P,∴∠APC=90°.

ABCD,∴ADBC,∴∠PBC=DAB,∴tanPBC=tanDAB,設(shè)CP=4k,BP=3k,由CP2+BP2=BC2,得(4k2+3k2=152,解得:k1=3(舍去),k2=3,∴x=BP=3×3=9,故當(dāng)x=9時(shí),圓心O落在AP上;

AP是⊙O的直徑,∴∠AEP=90°,∴PEAD

ABCD,∴BCAD,∴PEBC

2)如圖2,過(guò)點(diǎn)CCGAPG

ABCD,∴BCAD,∴∠CBG=DAB,∴tanCBG=tanDAB,設(shè)CG=4m,BG=3m,由勾股定理得:(4m2+3m2=152,解得:m=3,∴CG=4×3=12,BG=3×3=9PG=BGBP=94=5,AP=AB+BP=3+4=7,∴AG=AB+BG=3+9=12,∴tanCAP1,∴∠CAP=45°;

連接OP,OQ,過(guò)點(diǎn)OOHAPH,則∠POQ=2CAP=2×45°=90°,PHAP

RtCPG中,13

CP是⊙O的切線,∴∠OPC=OHP=90°,∠OPH+CPG=90°,∠PCG+CPG=90°,∴∠OPH=PCG,∴△OPH∽△PCG,∴,即PH×CP=CG×OP,13=12OP,∴OP,∴劣弧長(zhǎng)度

7,∴弦AP的長(zhǎng)度>劣弧長(zhǎng)度.

3)當(dāng)⊙O與線段AD只有一個(gè)公共點(diǎn)時(shí),⊙OAD相切于點(diǎn)A,或⊙O與線段DA的延長(zhǎng)線相交于另一點(diǎn),此時(shí)圓心O位于直線AB下方,且∠OAD90°,當(dāng)∠OAD=90°,∠CPM=DAB時(shí),即⊙ODA切于點(diǎn)A時(shí),BP取得最小值,如圖3,過(guò)點(diǎn)CCMABM

∵∠DAB=CBP,∴∠CPM=CBP,∴CB=CP

ABCD,∴ADBC,∴∠PBC=DAB,∴tanPBC=tanDAB,設(shè)CM=4k,BM=3k,由CM2+BM2=BC2,得(4k2+3k2=152,解得:k1=3(舍去),k2=3,∴x=BM=3×3=9

CMAB,∴BP=2BM=2×9=18,∴x18

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,以原點(diǎn)O為圓心的圓過(guò)點(diǎn)A(13,0),直線y=kx3k+4與O交于B、C兩點(diǎn),則弦BC的長(zhǎng)的最小值為( ).

A.22 B.24 C.10 D.12

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在斜坡的頂部有一鐵塔AB,BCD的中點(diǎn),CD是水平的,在陽(yáng)光的照射下,塔影DE留在坡面上.已知CD20m,DE30m,小明和小華的身高都是1.5m,同一時(shí)刻,小明站在E處,影子落在坡面上,影長(zhǎng)為2m,小華站在平地上,影子也落在平地上,影長(zhǎng)為1m,則塔高AB_____米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知正方形的邊長(zhǎng)為2,以點(diǎn)為圓心,1為半徑作圓,是圓上的任意一點(diǎn),將點(diǎn)繞點(diǎn)按逆時(shí)針?lè)较蜣D(zhuǎn)轉(zhuǎn),得到點(diǎn),連接,則的最大值是__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】勘測(cè)隊(duì)按實(shí)際需要構(gòu)建了平面直角坐標(biāo)系,并標(biāo)示了A,B,C三地的坐標(biāo),數(shù)據(jù)如圖(單位:km).筆直鐵路經(jīng)過(guò)A,B兩地.

1AB間的距離為______km;

2)計(jì)劃修一條從C到鐵路AB的最短公路l,并在l上建一個(gè)維修站D,使DA,C的距離相等,則C,D間的距離為______km

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某童裝專賣店在銷售中發(fā)現(xiàn),一款童裝每件進(jìn)價(jià)為80元,銷售價(jià)為120元時(shí),每天可售出20件,為了迎接國(guó)慶節(jié),商店決定采取適當(dāng)?shù)慕祪r(jià)措施,以擴(kuò)大銷售量,增加利潤(rùn),經(jīng)市場(chǎng)調(diào)查發(fā)現(xiàn),如果每件童裝降價(jià)1元,那么平均可多售出2.

1)每件童裝降價(jià)多少元時(shí),平均每天贏利1200.

2)每件童裝售價(jià)為多少元時(shí),平均每天贏利最大,并求最大利潤(rùn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,將坐標(biāo)原點(diǎn)沿軸向左平移個(gè)單位長(zhǎng)度得到點(diǎn),過(guò)點(diǎn)軸的平行線交反比例函數(shù)的圖象于點(diǎn),.

1)求反比例函數(shù)的解析式;

2)若是該反比例函數(shù)圖象上的兩點(diǎn),且當(dāng)時(shí),,指出點(diǎn)、各位于哪個(gè)象限?并簡(jiǎn)要說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在以點(diǎn)為中心的正方形中,,連接,動(dòng)點(diǎn)從點(diǎn)出發(fā)沿以每秒1個(gè)單位長(zhǎng)度的速度勻速運(yùn)動(dòng),到達(dá)點(diǎn)停止.在運(yùn)動(dòng)過(guò)程中,的外接圓交于點(diǎn),連接于點(diǎn),連接,將沿翻折,得到

(1)求證:是等腰直角三角形;

(2)當(dāng)點(diǎn)恰好落在線段上時(shí),求的長(zhǎng);

(3)設(shè)點(diǎn)運(yùn)動(dòng)的時(shí)間為秒,的面積為,求關(guān)于時(shí)間的關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)一種商品的進(jìn)價(jià)為每件30元,售價(jià)為每件40元.每天可以銷售48件,為盡快減少庫(kù)存,商場(chǎng)決定降價(jià)促銷.

(1)若該商品連續(xù)兩次下調(diào)相同的百分率后售價(jià)降至每件32.4元,求兩次下降的百分率;

(2)經(jīng)調(diào)查,若每降價(jià)0.5元,每天可多銷售4件,那么每天要想獲得510元的利潤(rùn),每件應(yīng)降價(jià)多少元?

查看答案和解析>>

同步練習(xí)冊(cè)答案