【題目】如圖1,在等邊△ABC中,點(diǎn)D是邊AC的中點(diǎn),點(diǎn)P是線段DC上的動點(diǎn)(點(diǎn)P與點(diǎn)C不重合),連接BP.將△ABP繞點(diǎn)P按順時針方向旋轉(zhuǎn)α角(0°<α<180°),得到△A1B1P,連接AA1 , 射線AA1分別交射線PB、射線B1B于點(diǎn)E、F.
(1)如圖1,當(dāng)0°<α<60°時,在α角變化過程中,△BEF與△AEP始終存在關(guān)系(填“相似”或“全等”),并說明理由;
(2)如圖2,設(shè)∠ABP=β.當(dāng)60°<α<180°時,在α角變化過程中,是否存在△BEF與△AEP全等?若存在,求出α與β之間的數(shù)量關(guān)系;若不存在,請說明理由;
(3)如圖3,當(dāng)α=60°時,點(diǎn)E、F與點(diǎn)B重合.已知AB=4,設(shè)DP=x,△A1BB1的面積為S,求S關(guān)于x的函數(shù)關(guān)系式.
【答案】
(1)相似
(2)解:存在,理由如下:
∵∠PAE=∠EBF,∠AEP=∠BEF,
∴△BEF∽△AEP,
若要使得△BEF≌△AEP,只需要滿足BE=AE即可,
∴∠BAE=∠ABE,
∵∠BAC=60°,
∴∠BAE= ,
∵∠ABE=β,∠BAE=∠ABE,
∴ ,
即α=2β+60°
(3)解:連接BD,交A1B1于點(diǎn)G,
過點(diǎn)A1作A1H⊥AC于點(diǎn)H.
∵∠B1A1P=∠A1PA=60°,
∴A1B1∥AC,
由題意得:AP=A1P=2+x,∠A=60°,
∴△PAA1是等邊三角形,
∴A1H=sin60°A1P= ,
在Rt△ABD中,BD= ,
∴BG= ,
∴ (0≤x<2).
【解析】解:(1)相似 由題意得:∠APA1=∠BPB1=α,AP=A1P,BP=B1P,
則∠PAA1=∠PBB1= ,
∵∠PBB1=∠EBF,
∴∠PAE=∠EBF,
又∵∠BEF=∠AEP,∠EBF=∠EAP,
∴△BEF∽△AEP;
【考點(diǎn)精析】關(guān)于本題考查的相似三角形的判定與性質(zhì)和旋轉(zhuǎn)的性質(zhì),需要了解相似三角形的一切對應(yīng)線段(對應(yīng)高、對應(yīng)中線、對應(yīng)角平分線、外接圓半徑、內(nèi)切圓半徑等)的比等于相似比;相似三角形周長的比等于相似比;相似三角形面積的比等于相似比的平方;①旋轉(zhuǎn)后對應(yīng)的線段長短不變,旋轉(zhuǎn)角度大小不變;②旋轉(zhuǎn)后對應(yīng)的點(diǎn)到旋轉(zhuǎn)到旋轉(zhuǎn)中心的距離不變;③旋轉(zhuǎn)后物體或圖形不變,只是位置變了才能得出正確答案.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一次中學(xué)生田徑運(yùn)動會上,根據(jù)參加男子跳高初賽的運(yùn)動員的成績(單位:m),繪制出如下的統(tǒng)計圖①和圖②,請根據(jù)相關(guān)信息,解答下列問題:
(Ⅰ)圖1中a的值為 ;
(Ⅱ)求統(tǒng)計的這組初賽成績數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù);
(Ⅲ)根據(jù)這組初賽成績,由高到低確定9人進(jìn)入復(fù)賽,請直接寫出初賽成績?yōu)?.65m的運(yùn)動員能否進(jìn)入復(fù)賽.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】仔細(xì)閱讀下面例題,然后按要求解答問題:
例題:已知二次三項式 有一個因式是 ,求另一個因式以及 的值.
解法一:設(shè)另一個因式為 ,
得 ,
則 ,
,
解得 ,
另一個因式為 , 的值為 .
解法二:∵二次三項式 x2-4x+m 有一個因式是 (x+3),
∴當(dāng)x+3=0,即x=-3時,x2-4x+m=0.
把x=-3代入x2-4x+m=0,
得m=-21,
而x2-4x-21=(x+3)(x-7).
問題:分別仿照以上兩種方法解答下面問題:
(1)已知二次三項式 有一個因式是 ,求另一個因式以及 的值.
解法一: 解法二:
(2)直接回答:
已知關(guān)于x的多項式 2x3 (3k)x22x1有一個因式是 1,則k的值為_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一個長方形運(yùn)動場被分隔成、、、、共個區(qū), 區(qū)是邊長為的正方形, 區(qū)是邊長為的正方形.
(1)列式表示每個區(qū)長方形場地的周長,并將式子化簡;
(2)列式表示整個長方形運(yùn)動場的周長,并將式子化簡;
(3)如果, ,求整個長方形運(yùn)動場的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn).已知反比例函數(shù)y= (k>0)的圖象經(jīng)過點(diǎn)A(2,m),過點(diǎn)A作AB⊥x軸于點(diǎn)B,且△AOB的面積為 .
(1)求k和m的值;
(2)點(diǎn)C(x,y)在反比例函數(shù)y= 的圖象上,求當(dāng)1≤x≤3時函數(shù)值y的取值范圍;
(3)過原點(diǎn)O的直線l與反比例函數(shù)y= 的圖象交于P、Q兩點(diǎn),試根據(jù)圖象直接寫出線段PQ長度的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)先化簡,再求值:(2+a)(2﹣a)+a(a﹣5b)+3a5b3÷(﹣a2b)2,其中ab=﹣.
(2)若x2+4x﹣4=0,求3(x﹣2)2﹣6(x+1)(x﹣1)的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點(diǎn)A在數(shù)軸上對應(yīng)的數(shù)為a,點(diǎn)B對應(yīng)的數(shù)為b,且a、b滿足|a+3|+(b﹣2)2=0.
(1)求A、B兩點(diǎn)的對應(yīng)的數(shù)a、b;
(2)點(diǎn)C在數(shù)軸上對應(yīng)的數(shù)為x,且x是方程2x+1=x﹣8的解.
①求線段BC的長;
②在數(shù)軸上是否存在點(diǎn)P,使PA+PB=BC?求出點(diǎn)P對應(yīng)的數(shù);若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是某居民小區(qū)的一塊寬為2a米,長為b米的長方形空地,為了美化環(huán)境,準(zhǔn)備在這塊長方形空地的四個頂點(diǎn)處修建一個半徑為a米的扇形花臺,然后在花臺內(nèi)種花,其余種草.
(1)請分別用含a、b的式子表示種花和種草的面積.(答案保留π)
(2)如果建造花臺及種花費(fèi)用每平方米需要資金100元,種草每平方米需要資金50元,那么美化這塊空地共需資金多少元?(答案保留π)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB交CD于O,OE⊥AB.
(1)若∠EOD=20°,求∠AOC的度數(shù);
(2)若∠AOC:∠BOC=1:2,求∠EOD的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com