【題目】九年級學生到距離學校6千米的百花公園去春游,一部分學生步行前往,20分鐘后另一部分學生騎自行車前往,設(分鐘)為步行前往的學生離開學校所走的時間,步行學生走的路程為千米,騎自行車學生騎行的路程為千米,關于的函數(shù)圖象如圖所示.

1)求關于的函數(shù)解析式;

2)步行的學生和騎自行車的學生誰先到達百花公園,先到了幾分鐘?

【答案】;(2)騎自行車的學生先到達百花公園,先到了10分鐘.

【解析】

1)根據(jù)函數(shù)圖象中的數(shù)據(jù)可以求得關于的函數(shù)解析式;

2)根據(jù)函數(shù)圖象中的數(shù)據(jù)和題意可以分別求得步行學生和騎自行車學生到達百花公園的時間,從而可以解答本題.

解:(1)設關于的函數(shù)解析式是,

,得,

關于的函數(shù)解析式是

2)由圖象可知,

步行的學生的速度為:千米/分鐘,

步行同學到達百花公園的時間為:(分鐘),

時, ,得,

答:騎自行車的學生先到達百花公園,先到了10分鐘.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某路公交車起點站設在一居民小區(qū)附近,為了解高峰時段從該起點站乘車出行的人數(shù),隨機抽查了高峰時段10個班次從該起點站乘車的人數(shù),結果如下:20、23、26、25、29、28、30、25、21、23.如果在高峰時段從該起點站共發(fā)車60個班次,那么估計在高峰時段從該起點站乘該路車出行的乘客一共有________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形的對角線相交于點,正方形的邊于點于點.

1)求證:;

2)如果正方形的邊長為,那么正方形點轉動的過程中,與正方形重疊部分的面積始終等于__________.(用含的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,點B、D、C在一條直線上,AB=ADBC=DE,AC=AE

1)求證:∠EAC=∠BAD

2)若∠BAD=42°,求∠EDC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某服裝店用4500元購進AB兩種新式服裝,按標價售出后可獲得毛利潤2800元(毛利潤=售價一進價),這兩種服裝的進價、標價如表所示

類型價格

A

B

進價(元/件)

60

100

標價(元/件)

100

160

1)請利用二元一次方程組求A,B兩種新式服裝各購進的件數(shù);

2)如果A種服裝按標價的9折出售,B種服裝按標價的8折出售,那么這批服裝全部售完后,服裝店比按標價出售少收入多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在等腰 RtABC ,AC=BC=2, P 在以斜邊 AB 為直徑的半圓上,M PC 的中點當點 P 沿半圓從點A 運動至點 B 時,點 M 運動的路徑長是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】2017浙江省溫州市)小黃準備給長8m,寬6m的長方形客廳鋪設瓷磚,現(xiàn)將其劃分成一個長方形ABCD區(qū)域Ⅰ(陰影部分)和一個環(huán)形區(qū)域Ⅱ(空白部分),其中區(qū)域Ⅰ用甲、乙、丙三種瓷磚鋪設,且滿足PQAD,如圖所示.

1)若區(qū)域Ⅰ的三種瓷磚均價為300元/m2,面積為Sm2),區(qū)域Ⅱ的瓷磚均價為200元/m2,且兩區(qū)域的瓷磚總價為不超過12000元,求S的最大值;

2)若區(qū)域Ⅰ滿足BC=23,區(qū)域Ⅱ四周寬度相等.

①求AB,BC的長;

②若甲、丙兩瓷磚單價之和為300元/m2,乙、丙瓷磚單價之比為53,且區(qū)域Ⅰ的三種瓷磚總價為4800元,求丙瓷磚單價的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,圖中的小方格都是邊長為1的正方形,ABCA、B、C三點坐標為A(2,0)、B(2,2)、C(6,3)。

(1) 請在圖中畫出一個,使ABC是以坐標原點為位似中心,相似比為2的位似圖形。

(2)求的面積。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC,AB=AC=13,BC=10,DBC的中點,DEAB于點E,tan BDE=

A. B. C. D.

查看答案和解析>>

同步練習冊答案