如圖,在平面直角坐標(biāo)系中,點C的坐標(biāo)為(0,4),動點A以每秒1個單位長的速度,從點O出發(fā)沿x軸的正方向運動,M是線段AC的中點.將線段AM以點A為中心,沿順時針方向旋轉(zhuǎn)90°,得到線段AB.過點B作x軸的垂線,垂足為E,過點C作y軸的垂線,交直線BE于點D.運動時間為t秒.
(1)當(dāng)點B與點D重合時,求t的值;
(2)設(shè)△BCD的面積為S,當(dāng)t為何值時,S=
(3)連接MB,當(dāng)MB∥OA時,如果拋物線y=ax2-10ax的頂點在△ABM內(nèi)部(不包括邊),求a的取值范圍.

【答案】分析:(1)由于∠CAB=90°,易證得Rt△CAO∽Rt△ABE;當(dāng)B、D重合時,BE的長已知(即OC長),根據(jù)AC、AB的比例關(guān)系,即可得到AO、BE的比例關(guān)系,由此求得t的值.
(2)求△BCD的面積時,可以CD為底、BD為高來解,那么表示出BD的長是關(guān)鍵;Rt△CAO∽Rt△ABE,且知道AC、AB的比例關(guān)系,即可通過相似三角形的對應(yīng)邊成比例求出BE的長,進一步得到BD的長,在表達BD長時,應(yīng)分兩種情況考慮:①B在線段DE上,②B在ED的延長線上.
(3)首先將拋物線的解析式進行配方,可得到拋物線的頂點坐標(biāo),將其橫坐標(biāo)分別代入直線MB、AB的解析式中,可得到拋物線對稱軸與這兩條直線的交點坐標(biāo),根據(jù)這兩個坐標(biāo)即可判定出a的取值范圍.
解答:解:(1)∵∠CAO+∠BAE=90°,∠ABE+∠BAE=90°,
∴∠CAO=∠ABE.
∴Rt△CAO∽Rt△ABE.
=
=
∴t=8.

(2)由Rt△CAO∽Rt△ABE可知:BE=,AE=2.
當(dāng)0<t<8時,S=CD•BD=(2+t)(4-)=
∴t1=t2=3.
當(dāng)t>8時,S=CD•BD=(2+t)(-4)=
∴t1=3+5,t2=3-5(為負數(shù),舍去).
當(dāng)t=3或3+5時,S=

(3)過M作MN⊥x軸于N,則MN=CO=2.
當(dāng)MB∥OA時,BE=MN=2,OA=2BE=4.
拋物線y=ax2-10ax的頂點坐標(biāo)為(5,-25a).
它的頂點在直線x=5上移動.
直線x=5交MB于點(5,2),交AB于點(5,1).
∴1<-25a<2.
∴-<a<-
點評:考查了二次函數(shù)綜合題,該題是圖形的動點問題,前兩問的關(guān)鍵在于找出相似三角形,得到關(guān)鍵線段的表達式,注意點在運動過程中未知數(shù)的取值范圍問題.最后一問中,先得到拋物線的頂點坐標(biāo)是簡化解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點P為x軸上的一個動點,但是點P不與點0、點A重合.連接CP,D點是線段AB上一點,連接PD.
(1)求點B的坐標(biāo);
(2)當(dāng)∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標(biāo)xoy中,以坐標(biāo)原點O為圓心,3為半徑畫圓,從此圓內(nèi)(包括邊界)的所有整數(shù)點(橫、縱坐標(biāo)均為整數(shù))中任意選取一個點,其橫、縱坐標(biāo)之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,等腰梯形ABCD的下底在x軸上,且B點坐標(biāo)為(4,0),D點坐標(biāo)為(0,3),則AC長為
5
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)xOy中,已知點A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點,PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動點P從點O出發(fā),在梯形OABC的邊上運動,路徑為O→A→B→C,到達點C時停止.作直線CP.
(1)求梯形OABC的面積;
(2)當(dāng)直線CP把梯形OABC的面積分成相等的兩部分時,求直線CP的解析式;
(3)當(dāng)△OCP是等腰三角形時,請寫出點P的坐標(biāo)(不要求過程,只需寫出結(jié)果).

查看答案和解析>>

同步練習(xí)冊答案