兩個(gè)數(shù)相差左,設(shè)其中較大的一個(gè)數(shù)為x,那么它們的積y是如何隨x的變化而變化的?你能分別用函數(shù)表達(dá)式、表格和圖象表示這種變化嗎?
(1)用函數(shù)表達(dá)式表示:y=______;
(左)用表格表示:
x
y
(3)用圖象表示.
(4)根據(jù)以上三種表示方式回答下列問(wèn)題:
①自變量x的取值范圍是什么?
②圖象的對(duì)稱軸和頂點(diǎn)坐標(biāo)分別是什么?
③如何描述y隨x的變化而變化的情況?
④你是分別通過(guò)哪種表示方式回答上面三個(gè)問(wèn)題的?
(1)y=x(x-2)=(x-1)2-1;

(2)用表格表示:
x-2-1012o4
y8o0-10o8
(o)用圖象表示,如圖所示:


(4)①自變量x的取值范圍是任意實(shí)數(shù);
②圖象的對(duì)稱軸為直線x=1,頂點(diǎn)坐標(biāo)為(1,-1);
③當(dāng)x<1時(shí),y隨x的增大而減。划(dāng)x>1時(shí),y隨x的增大而增大;
④自變量取值范圍是由解析式得到;對(duì)稱軸與頂點(diǎn)坐標(biāo)由表格得到;增減性是由圖象得到.
故答案為:y=(x-1)2-1.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知二次函數(shù)的頂點(diǎn)C的橫坐標(biāo)為1,一次函數(shù)y=kx+2的圖象與二次函數(shù)的圖象交于A、B兩點(diǎn),且A點(diǎn)在y軸上,以C為圓心,CA為半徑的⊙C與x軸相切,
(1)求二次函數(shù)的解析式;
(2)若B點(diǎn)的橫坐標(biāo)為3,過(guò)拋物線頂點(diǎn)且平行于x軸的直線為l,判斷以AB為直徑的圓與直線l的位置關(guān)系;
(3)在滿足(2)的條件下,把二次函數(shù)的圖象向右平移7個(gè)單位,向下平移t個(gè)單位(t>2)的圖象與x軸交于E、F兩點(diǎn),當(dāng)t為何值時(shí),過(guò)B、E、F三點(diǎn)的圓的面積最小?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

己知:二次函數(shù)y=ax2+bx+6(a≠0)與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),點(diǎn)A、點(diǎn)B的橫坐標(biāo)是一元二次方程x2-4x-12=0的兩個(gè)根.
(1)請(qǐng)直接寫出點(diǎn)A、點(diǎn)B的坐標(biāo).
(2)請(qǐng)求出該二次函數(shù)表達(dá)式及對(duì)稱軸和頂點(diǎn)坐標(biāo).
(3)如圖1,在二次函數(shù)對(duì)稱軸上是否存在點(diǎn)P,使△APC的周長(zhǎng)最小,若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
(4)如圖2,連接AC、BC,點(diǎn)Q是線段0B上一個(gè)動(dòng)點(diǎn)(點(diǎn)Q不與點(diǎn)0、B重合).過(guò)點(diǎn)Q作QDAC交BC于點(diǎn)D,設(shè)Q點(diǎn)坐標(biāo)(m,0),當(dāng)△CDQ面積S最大時(shí),求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知拋物線y=ax2+bx+c(a≠0)經(jīng)過(guò)A(-2,0)、B(0,1)兩點(diǎn),且對(duì)稱軸是y軸.經(jīng)過(guò)點(diǎn)C(0,2)的直線l與x軸平行,O為坐標(biāo)原點(diǎn),P、Q為拋物線y=ax2+bx+c(a≠0)上的兩動(dòng)點(diǎn).
(1)求拋物線的解析式;
(2)以點(diǎn)P為圓心,PO為半徑的圓記為⊙P,判斷直線l與⊙P的位置關(guān)系,并證明你的結(jié)論;
(3)設(shè)線段PQ=9,G是PQ的中點(diǎn),求點(diǎn)G到直線l距離的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在直角坐標(biāo)系中,Rt△AOB的頂點(diǎn)坐標(biāo)分別為A(0,2),O(0,0),B(4,0),△AOB繞O點(diǎn)按逆時(shí)針?lè)较蛐D(zhuǎn)90°得到△COD.
(1)求C、D兩點(diǎn)的坐標(biāo);
(2)求經(jīng)過(guò)C、D、B三點(diǎn)的拋物線的解析式;
(3)設(shè)(2)中的拋物線的頂點(diǎn)為P,AB的中點(diǎn)為M,試判斷△PMB是鈍角三角形、直角三角形還是銳角三角形,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知拋物線y=
1
2
x2+mx+n(n≠0)與直線y=x交于A、B兩點(diǎn),與y軸交于點(diǎn)C,OA=OB,BCx軸.
(1)求拋物線的解析式;
(2)設(shè)D、E是線段AB上異于A、B的兩個(gè)動(dòng)點(diǎn)(點(diǎn)E在點(diǎn)D的上方),DE=
2
,過(guò)D、E兩點(diǎn)分別作y軸的平行線,交拋物線于F、G,若設(shè)D點(diǎn)的橫坐標(biāo)為x,四邊形DEGF的面積為y,求x與y之間的關(guān)系式,寫出自變量x的取值范圍,并回答x為何值時(shí),y有最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

某建筑物的窗戶如圖所示,它的上半部是半圓,下半部是矩形,制造窗框的材料總長(zhǎng)(圖中所有黑線的長(zhǎng)度和)為10米.當(dāng)x等于多少米時(shí),窗戶的透光面積最大,最大面積是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

草莓是對(duì)薔薇科草莓屬植物的通稱,屬多年生草本植物,草莓的外觀呈心形,鮮美紅嫩,果肉多汁,含有特殊的濃郁水果芳香,草莓營(yíng)養(yǎng)價(jià)值高,含豐富維生素C,有幫助消化的功效,與此同時(shí),草莓還可以鞏固齒齦,清新口氣,潤(rùn)澤喉部.我市某草莓種植基地去年第x個(gè)月種植草莓的畝數(shù)y(畝),與x(1≤x≤12,且x為整數(shù))之間的函數(shù)關(guān)系如表:
月份x123456789101112
13種植某數(shù)y6810121416161616161616
每畝收益z(元)與月份x(月)(1≤x≤12,且x為整數(shù))之間存在如圖所示的變化趨勢(shì):
(1)請(qǐng)觀察題中的表格,用所學(xué)過(guò)的一次函數(shù),反比例函數(shù)或二次函數(shù)的有關(guān)知識(shí),直接寫出y與x之間的函數(shù)關(guān)系式,根據(jù)如圖所示的變化趨勢(shì),直接寫出z與x之間滿足的函數(shù)關(guān)系式;
(2)該草莓種植基地在去年哪個(gè)月的總收益最大,求出這個(gè)最大收益;
(3)今年1月份,該草莓種植基地加大規(guī)模,種植草莓比去年12月份多4畝,每畝收益比去年12月份多a%,今年2月份,該草莓種植基地繼續(xù)加大規(guī)模,種植草莓比今年1月份多2a%,每畝收益比今年1月份多6元,若今年2月份該草莓種植基地總收益為672元,請(qǐng)你參考以下數(shù)據(jù),通過(guò)計(jì)算估算出a的整數(shù)值.(參考數(shù)據(jù):
63
=7.94,
65
=8.06,
66
=8.12)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

用長(zhǎng)度為20m的金屬材料制成如圖所示的金屬框,下部為矩形,上部為等腰直角三角形,其斜邊長(zhǎng)為2xm.當(dāng)該金屬框圍成的圖形面積最大時(shí),圖形中矩形的相鄰兩邊長(zhǎng)各為多少?請(qǐng)求出金屬框圍成的圖形的最大面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案