二次函數(shù)的圖像的頂點為,與軸交于點,以為邊在第二象限內作等邊三角形

(1)求直線的表達式和點的坐標;

(2)點在第二象限,且△的面積等于△的面積,求點的坐標;

(3)以軸上的點為圓心,1為半徑的圓,與以點為圓心,的長為半徑的圓相切,直接寫出點的坐標.

 

【答案】

(1),(2)(3),,

【解析】解:(1)二次函數(shù)的圖像的頂點,與軸的交點, (2分)

        設直線的表達式為,

可求得,.所以直線的表達式為.             (1分)

可得,∵

.                                                       (1分)

在Rt△中,由勾股定理得:

.點.                                            (1分)

解:(2)∵點都在第二象限,且△的面積等于△的面積,

.                                                         (1分)

設直線的表達式為,點在直線上,

可得

∴直線的表達式為.                                     (1分)

可得點的坐標:.                                           (1分)

解:(3)點的坐標,,

(1)已知拋物線的解析式,其頂點以及函數(shù)圖象與y軸交點坐標易求得.在求點C的坐標時,要把握住Rt△AOB的特殊性(含30°角),顯然,若△ABC是等邊三角形,那么AC與x軸垂直,無論通過勾股定理求邊長還是根據(jù)B點在AC的中垂線上,都能比較容易的求出點C的坐標.

(2)“M點在第二象限內”確定了點M的大致范圍,若“△ABM的面積等于△ABC的面積”,以AB為底邊進行分析,那么點C、點M到直線AB的距離是相同的,即CM∥AB,直線AB的解析式易求,兩直線平行則斜率相同,再代入點C的坐標就能通過待定系數(shù)法求出直線CM的解析式,然后代入點M的縱坐標即可得出結論.

(3)首先求出⊙C的半徑,即CM的長.若⊙C與⊙N相切,就要分兩種情況來考慮:①外切,CN長等于兩圓的半徑和;②內切,CN長等于兩圓的半徑差.

在明確CN長的情況下,在Rt△CAN中,通過勾股定理求出AN的長,進一步即可確定點N的坐標.

 

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖,在平面直角坐標系xOy中,半徑為與x軸交于、兩點,且點C在x軸的上方.

(1)求圓心C的坐標;

(2)已知一個二次函數(shù)的圖像經過點、B、C,求這二次函數(shù)的解析式;

(3)設點P在y軸上,點M在(2)的二次函數(shù)圖像上,如果以點P、M、A、B為頂點的四邊形是平行四邊形,請你直接寫出點M的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(本題滿分12分,第(1)小題4分,第(2)小題4分、第(3)小題4分)

如圖8,在平面直角坐標系xOy中,半徑為與x軸交于、兩點,且點C在x軸的上方.

(1)求圓心C的坐標;

(2)已知一個二次函數(shù)的圖像經過點、B、C,求這二次函數(shù)的解析式;

(3)設點P在y軸上,點M在(2)的二次函數(shù)圖像上,如果以點P、M、A、B為頂點的四邊形是平行四邊形,請你直接寫出點M的坐標.

 

查看答案和解析>>

科目:初中數(shù)學 來源:2011屆上海市普陀區(qū)4月中考模擬數(shù)學試卷 題型:解答題

(本題滿分12分,第(1)小題4分,第(2)小題4分、第(3)小題4分)
如圖8,在平面直角坐標系xOy中,半徑為與x軸交于兩點,且點C在x軸的上方.

(1)求圓心C的坐標;
(2)已知一個二次函數(shù)的圖像經過點、B、C,求這二次函數(shù)的解析式;
(3)設點P在y軸上,點M在(2)的二次函數(shù)圖像上,如果以點P、M、A、B為頂點的四邊形是平行四邊形,請你直接寫出點M的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:2010-2011學年上海市考模擬數(shù)學試卷 題型:解答題

(本題滿分12分,第(1)小題4分,第(2)小題4分、第(3)小題4分)

如圖8,在平面直角坐標系xOy中,半徑為與x軸交于兩點,且點C在x軸的上方.

(1)求圓心C的坐標;

(2)已知一個二次函數(shù)的圖像經過點、B、C,求這二次函數(shù)的解析式;

(3)設點P在y軸上,點M在(2)的二次函數(shù)圖像上,如果以點P、M、A、B為頂點的四邊形是平行四邊形,請你直接寫出點M的坐標.

 

查看答案和解析>>

同步練習冊答案