【題目】如圖,將△ABC沿BC方向平移2cm得到△DEF,若△ABC的周長為16cm,則四邊形ABFD的周長為( )
A.16cm
B.18cm
C.20cm
D.22cm
【答案】C
【解析】解:根據(jù)題意,將周長為16cm的△ABC沿BC向右平移2cm得到△DEF,
∴AD=CF=2cm,BF=BC+CF=BC+2cm,DF=AC;
又∵AB+BC+AC=16cm,
∴四邊形ABFD的周長=AD+AB+BF+DF=2+AB+BC+2+AC=20cm.
故選:C.
【考點精析】掌握平移的性質(zhì)是解答本題的根本,需要知道①經(jīng)過平移之后的圖形與原來的圖形的對應(yīng)線段平行(或在同一直線上)且相等,對應(yīng)角相等,圖形的形狀與大小都沒有發(fā)生變化;②經(jīng)過平移后,對應(yīng)點所連的線段平行(或在同一直線上)且相等.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形紙片ABCD中,,將紙片折疊,點A、D分別落在A′、D′處,且A′D′經(jīng)過B,EF為折痕,當(dāng)D′FCD時,的值為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知A1、A2、……、An、An+1是x軸上的點,且OA1=A1A2=A2A3=……=AnAn+1=1,分別過點A1、A2、……、An、An+1作x軸的垂線交直線y=2x于點B1、B2、……、Bn、Bn+1,連接A1B2、B1A2、A2B3、B2A3、……、AnBn+1、BnAn+1,依次相交于點P1、P2、P3、……、Pn,△A1B1P1、△A2B2P2、……、△AnBnPn的面積依次為S1、S2、……、Sn,則Sn為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將拋物線y=2x2向左平移1個單位,再向上平移3個單位得到的拋物線,其解析式是( )
A.y=2(x+1)2+3
B.y=2(x﹣1)2﹣3
C.y=2(x+1)2﹣3
D.y=2(x﹣1)2+3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】Rt△ABC在直角坐標(biāo)系內(nèi)的位置如圖所示,反比例函數(shù) 在第一象限內(nèi)的圖象與BC邊交于點D(4,m),與直線AB:y= x+b交于點E(2,n).
(1)m= ,點B的縱坐標(biāo)為 ;(用含n的代數(shù)式表示);
(2)若△BDE的面積為2,設(shè)直線AB與y軸交于點F,問:在射線FD上,是否存在異于點D的點P,使得以P、B、F為頂點的三角形與△ABC相似?若存在,請求出點P的坐標(biāo);若不存在,請說明理由.
(3)在(2)的條件下,現(xiàn)有一動點M,從O點出發(fā),沿x軸的正方向,以每秒2個單位的速度運動,設(shè)運動時間為t(s),問:是否存在這樣的t,使得在直線AB上,有且只有一點N,滿足∠MNC=45°?若存在,請求出所有符合條件的t的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,經(jīng)過原點的拋物線與軸的另一個交點為A。過點P(1,m)作直線PM⊥軸于點M,交拋物線于點B,記點B關(guān)于拋物線對稱軸的對稱點為C(點B、點C不重合),連接CB,CP。
⑴當(dāng)時,求點A的坐標(biāo)及BC的長;
⑵當(dāng)時,連接CA,當(dāng)CA⊥CP時,求的值;
⑶過點P作PE⊥PC,且PE=PC,問是否存在m,使得點E恰好落在坐標(biāo)軸上,若存在,請直接寫出所有滿足條件的點E的坐標(biāo);若不存在,請說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若a、b、c為一個三角形的三邊長,則式子(a-c)2-b2的值( )
A. 一定為正數(shù) B. 一定為負(fù)數(shù)
C. 可能是正數(shù),也可能是負(fù)數(shù) D. 可能為0
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若關(guān)于x的代數(shù)式(x+m)與(x-4)的乘積中一次項是5x,則常數(shù)項為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列式子中代數(shù)式的個數(shù)有( ) -2a-5,-3,2a+1=4,3x3+2x2y4 , -b .
A.2個
B.3個
C.4個
D.5個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com