【題目】如圖,在平面直角坐標系中,OA=2,OB=3,現(xiàn)同時將點A,B分別向上平移2個單位,再向右平移2個單位,分別得到點A,B的對應點C,D,連接AC,BD.
(1)求點C、D的坐標及四邊形ABDC的面積;
(2)若點Q在線的CD上移動(不包括C,D兩點).QO與線段AB,CD所成的角∠1與∠2如圖所示,給出下列兩個結(jié)論:①∠1+∠2的值不變;②的值不變,其中只有一個結(jié)論是正確的,請你找出這個結(jié)論,并求出這個值.
(3)在y軸正半軸上是否存在點P,使得S△CDP=S△PBO?如果有,試求出點P的坐標.
【答案】(1)C(0,2)、D(5,2);S四邊形ABDC=10;(2)∠1+∠2=180°;證明見解析;(3)存在,點P的坐標為(0,)或(0,5).
【解析】
(1)依據(jù)平移與坐標變化的規(guī)律可求的點C、D的坐標,由點的坐標可求得AB、OC的長,從而可求得四邊形ABDC的面積;
(2)依據(jù)平行的性質(zhì)可證明∠1+∠2=180°;
(3)設點P的坐標(0,a),然后依據(jù)三角形的面積公式列方程求解即可.
(1)OA=2,OB=3,
∴A(﹣2,0)、B(3,0).
∵將點A,B分別向上平移2個單位,再向右平移2個單位,分別得到點A,B的對應點C,D,
∴C(0,2)、D(5,2).
∵由平移的性質(zhì)可知:AB∥CD,AB=CD,
∴ABCD為平行四邊形.
∴四邊形ABDC的面積=ABOC=5×2=10.
(2)∠1+∠2=180°.
證明:如圖1所示;
∵AB∥CD,
∴∠1=∠3.
∵∠3+∠2=180°.
∴∠1+∠2=180°.
∴∠1+∠2為定值.
∵∠1+∠2=180°,
∴∠2=180°﹣∠1.
∴==﹣1.
∵當點Q在CD上運動時,∠1的度數(shù)在不斷變化,
∴﹣1在不斷變化,即的值在不斷變化;
(3)如圖2所示:設點P的坐標為(0,a),則PC=(2﹣a),PO=a.
∵S△CDP=S△PBO,
∴DCPC=OBOP.
∴×5(2﹣a)=×3×a.
∴10﹣5a=3a
解得:a=
如圖3所示:設點P的坐標為(0,a),則PC=a﹣2,PO=a.
∵SCDP=S△PBO,
∴DCPC=OBOP.
∴×5×(a﹣2)=×3×a.
∴5a﹣10=3a.
解得:a=5.
綜上所述,點P的坐標為(0,)或(0,5).
科目:初中數(shù)學 來源: 題型:
【題目】順次連結(jié)一四邊形各邊的中點,若所得的四邊形是一個菱形,則原四邊形一定是( ).
A.矩形B.對角線相互垂直的四邊形
C.平行四邊形D.對角線相等的四邊形
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在由邊長為1個單位長度的小正方形組成的10×10網(wǎng)格中,已知△ABC的頂點均為網(wǎng)格線的交點.
(1)將△ABC向下平移5個單位長度,再向左平移1個單位長度,畫出平移后的△A1B1C1;
(2)畫出△A1B1C1關(guān)于直線l軸對稱的△A2B2C2;
(3)將△ABC繞點C逆時針旋轉(zhuǎn)90°,畫出旋轉(zhuǎn)后的△A3B3C3以A、A3、B、B3為頂點的四邊形的面積為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,動點 P 在平面直角坐標系中按圖中箭頭所示方向運動,第 1 次從原點運動到點(1,1),第 2 次接著運動到點(2,0),第 3 次接著運動到點(3,2),……,按這樣的運動規(guī)律,經(jīng)過第2025 次運動后,動點 P 的坐標是( )
A.(2025,1)B.(2025,0)C.(2026,2)D.(2026,1)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某市自來水公司為限制單位用水,每月只給某單位計劃內(nèi)用水 3000 噸,計劃內(nèi)用水每噸收費 0.5元,超計劃部分每噸按 0.8 元收費.
(1)寫出該單位水費 y(元)與每月用水量 x(噸)之間的函數(shù)關(guān)系式:(寫出自變量取值范圍)
①用水量小于等于 3000 噸 ;
②用水量大于 3000 噸 .
(2)某月該單位用水 3200 噸,水費是 元;若用水 2800 噸,水費 元.
(3)若某月該單位繳納水費 1580 元,則該單位用水多少噸?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AC,BD在AB的同側(cè),AC=10,BD=3,AB=8,點M為AB的中點,若∠CMD=120°,則CD的最大值是____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b與反比例函數(shù)y=(x>0)的圖象交于A(m,4),B(2,n)兩點,與坐標軸分別交于M、N兩點.
(1)求一次函數(shù)的解析式;
(2)根據(jù)圖象直接寫出不等式kx+b﹣>0的解集;
(3)求△AOB的面積;
(4)若點P在x軸上、點Q在y軸上,且以P、Q、A、B為頂點的四邊形是平行四邊形,請直接寫出點P、Q的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com