【題目】如圖,在矩形ABCD中,E是BC邊的中點,將△ABE沿AE所在的直線折疊得到△AFE,延長AF交CD于點G,已知CG=2,DG=1,則BC的長是( )
A.3B.2C.2D.2
【答案】B
【解析】
連接EG,由折疊的性質(zhì)可得BE=EF又由E是BC邊的中點,可得EF=EC,然后證得Rt△EGF≌Rt△EGC(HL),得出FG=CG=2,繼而求得線段AG的長,再利用勾股定理求解,即可求得答案.
解:連接EG,
∵E是BC的中點,
∴BE=EC,
∵△ABE沿AE折疊后得到△AFE,
∴BE=EF,
∴EF=EC,
∵在矩形ABCD中,
∴∠C=90°,
∴∠EFG=∠B=90°,
∵在Rt△EGF和Rt△EGC中,
,
∴Rt△EGF≌Rt△EGC(HL),
∴FG=CG=2,
∵在矩形ABCD中,AB=CD=CG+DG=2+1=3,
∴AF=AB=3,
∴AG=AF+FG=3+2=5,
∴BC=AD===2.
故選:B.
科目:初中數(shù)學 來源: 題型:
【題目】某汽車租賃公司要購買轎車和面包車共輛.其中面包車不能超過轎車的兩倍,轎車每輛萬元,面包車每輛萬元,公司可投入的購車款不超過61萬元.
(小題1)符合公司要求的購買方案有哪幾種?請說明理由.
(小題2)如果每輛轎車的日租金為元,每輛面包車的日租金為元.假設新購買的這輛車每日都可租出,要使這輛車的日租金收入不低于1600元,那么應選擇以上哪種購買方案?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】出租車司機小李某天下午運營全是在東西走向的人民大道上進行的,如果規(guī)定向東為正,向西為負,他這天下午行駛里程如下:(單位:千米)
+15, -3, +14,-11,+10,-12,+4,-15,+16,-18
(1)他將最后一名乘客送到目的地時,距下午出車地點是多少千米?
(2)若汽車耗油量為升∕千米,這天下午共耗油多少升
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知是等邊三角形,D是BC邊上的一個動點點D不與B,C重合是以AD為邊的等邊三角形,過點F作BC的平行線交射線AC于點E,連接BF.
如圖1,求證:≌;
請判斷圖1中四邊形BCEF的形狀,并說明理由;
若D點在BC邊的延長線上,如圖2,其它條件不變,請問中結論還成立嗎?如果成立,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀下列材料,并回答問題.我們知道|a|的幾何意義是指數(shù)軸上表示數(shù)的點與原點的距離,那么|a-b|的幾何意義又是什么呢?我們不妨考慮一下,取特殊值時的情況.比如考慮|5-(-6)|的幾何意義,在數(shù)軸上分別標出表示-6和5的點,(如圖所示),兩點間的距離是11,而|5-(-6)|=11,因此不難看出|5-(-6)|就是數(shù)軸上表示-6和5兩點間的距離.
(1)|a-b|的幾何意義是_______;
(2)當|x-2|=2時,求出x的值.
(3)設Q=|x+6|-|x-5|,請問Q是否存在最大值,若沒有請說明理由,若有,請求出最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】有8筐白菜,以每筐25千克為標準,超過的千克數(shù)記作正數(shù),不足的千克數(shù)記作負數(shù),稱后的記錄如下:
(1)這8筐白菜中,最接近25千克的那筐白菜為______千克;
(2)以每筐25千克為標準,這8筐白菜總計超過或不足多少千克?
(3)若白菜每千克售價2元,則出售這8筐白菜可賣多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知矩形ABCD,AB=6,AD=8,將矩形ABCD繞點A順時針旋轉θ(0°<θ<360°)得到矩形AEFG,當θ=_____°時,GC=GB.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】正在建設的成都第二繞城高速全長超過220公里,串起我市二、三圈層以及周邊的廣漢、簡陽等地,總投資達290億元,用科學計數(shù)法表示290億元應為( )
A. 290× B. 290×
C. 2.90× D. 2.90×
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】用適當?shù)姆椒ń庀铝蟹匠蹋?/span>
(1)(x﹣1)2=9
(2)3x2﹣6x=0
(3)x2+2x=5
(4)4x2﹣8x+1=0(用公式法)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com