【題目】如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y= (x>0)的圖象交于A(2,﹣1),B( ,n)兩點(diǎn),直線y=2與y軸交于點(diǎn)C.
(1)求一次函數(shù)與反比例函數(shù)的解析式;
(2)求△ABC的面積.
【答案】
(1)解:把A(2,﹣1)代入反比例解析式得:﹣1= ,即m=﹣2,
∴反比例解析式為y=﹣ ,
把B( ,n)代入反比例解析式得:n=﹣4,即B( ,﹣4),
把A與B坐標(biāo)代入y=kx+b中得: ,
解得:k=2,b=﹣5,
則一次函數(shù)解析式為y=2x﹣5;
(2)解:∵A(2,﹣1),B( ,﹣4),直線AB解析式為y=2x﹣5,
∵C(0,2),直線BC解析式為y=﹣12x+2,
將y=﹣1代入BC的解析式得x= ,則AD=2﹣ = .
∵xC﹣xB=2﹣(﹣4)=6,
∴S△ABC= ×AD×(yC﹣yB)= × ×6= .
【解析】(1)把A坐標(biāo)代入反比例解析式求出m的值,確定出反比例解析式,再將B坐標(biāo)代入求出n的值,確定出B坐標(biāo),將A與B坐標(biāo)代入一次函數(shù)解析式求出k與b的值,即可確定出一次函數(shù)解析式;(2)利用兩點(diǎn)間的距離公式求出AB的長(zhǎng),利用點(diǎn)到直線的距離公式求出點(diǎn)C到直線AB的距離,即可確定出三角形ABC面積.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在質(zhì)量檢測(cè)中,從每盒標(biāo)準(zhǔn)質(zhì)量為125克的酸奶中,抽取6盒,結(jié)果如下:
編號(hào) | 1 | 2 | 3 | 4 | 5 | 6 |
質(zhì)量(克) | 126 | 127 | 124 | 126 | 123 | 125 |
差值(克) | +1 |
(1)補(bǔ)全表格中相關(guān)數(shù)據(jù);
(2)請(qǐng)你利用差值列式計(jì)算這6盒酸奶的質(zhì)量和.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠BOC=60°,點(diǎn)A是BO延長(zhǎng)線上的一點(diǎn),OA=10cm,動(dòng)點(diǎn)P從點(diǎn)A出發(fā)沿AB以2cm/s的速度移動(dòng),動(dòng)點(diǎn)Q從點(diǎn)O出發(fā)沿OC以1cm/s的速度移動(dòng),如果點(diǎn)P,Q同時(shí)出發(fā),用t(s)表示移動(dòng)的時(shí)間,當(dāng)t=________s時(shí),△POQ是等腰三角形;當(dāng)t=_______s時(shí),△POQ是直角三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明同學(xué)在學(xué)習(xí)了全等三角形的相關(guān)知識(shí)后發(fā)現(xiàn),只用兩把完全相同的長(zhǎng)方形直尺就可以作出一個(gè)角的平分線.如圖:一把直尺壓住射線OB,另一把直尺壓住射線OA并且與第一把直尺交于點(diǎn)P,小明說:“射線OP就是∠BOA的角平分線.”他這樣做的依據(jù)是( 。
A. 角的內(nèi)部到角的兩邊的距離相等的點(diǎn)在角的平分線上
B. 角平分線上的點(diǎn)到這個(gè)角兩邊的距離相等
C. 三角形三條角平分線的交點(diǎn)到三條邊的距離相等
D. 三角形三條垂直平分線的交點(diǎn)到三個(gè)定點(diǎn)的距離相等
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校要求八年級(jí)同學(xué)在課外活動(dòng)中,必須在五項(xiàng)球類(籃球、足球、排球、羽毛球、乒乓球)活動(dòng)中任選一項(xiàng)(只能選一項(xiàng))參加訓(xùn)練,為了了解八年級(jí)學(xué)生參加球類活動(dòng)的整體情況,現(xiàn)以八年級(jí)2班作為樣本,對(duì)該班學(xué)生參加球類活動(dòng)的情況進(jìn)行統(tǒng)計(jì),并繪制了如圖所示的不完整統(tǒng)計(jì)表和扇形統(tǒng)計(jì)圖:
八年級(jí)2班參加球類活動(dòng)人數(shù)統(tǒng)計(jì)表 | |||||
項(xiàng)目 | 籃球 | 足球 | 乒乓球 | 排球 | 羽毛球 |
人數(shù) | a | 6 | 5 | 7 | 6 |
根據(jù)圖中提供的信息,解答下列問題:
(1)a= , b=;
(2)該校八年級(jí)學(xué)生共有600人,則該年級(jí)參加足球活動(dòng)的人數(shù)約 人;
(3)該班參加乒乓球活動(dòng)的5位同學(xué)中,有3位男同學(xué)(A,B,C)和2位女同學(xué)(D,E),現(xiàn)準(zhǔn)備從中選取兩名同學(xué)組成雙打組合,用樹狀圖或列表法求恰好選出一男一女組成混合雙打組合的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖, 已知∠1+∠2=180o, ∠3=∠B, 試說明∠DEC+∠C=180o. 請(qǐng)完成下列填空:
解:∵∠1+∠2=180o(已知)
又∵∠1+ =180o(平角定義)
∴∠2= (同角的補(bǔ)角相等)
∴ (內(nèi)錯(cuò)角相等,兩直線平行)
∴∠3 = (兩直線平行,內(nèi)錯(cuò)角相等)
又∵∠3=∠B(已知)
∴ (等量代換)
∴ ∥ ( )
∴∠DEC+∠C=180o( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一副三角板按如圖放置,下列結(jié)論:①∠1=∠3;②若BC∥AD,則∠4=∠3;③若∠2=15°,必有∠4=2∠D;④若∠2=30°,則有AC∥DE. 其中正確的有_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,過點(diǎn)A作AE⊥BC于點(diǎn)E,AF⊥DC于點(diǎn)F,AE=AF.
(1)求證:四邊形ABCD是菱形;
(2)若∠EAF=60°,CF=2,求AF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:有一組鄰邊相等,并且它們的夾角是直角的凸四邊形叫做等腰直角四邊形.
(1)如圖1,等腰直角四邊形ABCD,AB=BC,∠ABC=90°,
①若AB=CD=1,AB//CD,求對(duì)角線BD的長(zhǎng).
②若AC⊥BD,求證:AD=CD.
(2)如圖2,在矩形ABCD中,AB=5,BC=9,點(diǎn)P是對(duì)角線BD上一點(diǎn),且BP=2PD,過點(diǎn)P作直線分別交邊AD,BC于點(diǎn)E,F(xiàn),使四邊形ABFE是等腰直角四邊形.求AE的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com