【題目】如圖,E為正方形ABCD內(nèi)一點(diǎn),點(diǎn)F在CD邊上,且∠BEF=90°,EF=2BE.點(diǎn)G為EF的中點(diǎn),點(diǎn)H為DG的中點(diǎn),連接EH并延長到點(diǎn)P,使得PH=EH,連接DP.
(1)依題意補(bǔ)全圖形;
(2)求證:DP=BE;
(3)連接EC,CP,猜想線段EC和CP的數(shù)量關(guān)系并證明.
【答案】(1)詳見解析;(2)詳見解析;(3)詳見解析
【解析】
(1)根據(jù)題意可以畫出完整的圖形;
(2)由EF=2BE,點(diǎn)G為EF的中點(diǎn)可知,要證明DP=BE,只要證明DP=EG即可,要證明DP=EG,只要證明ΔPDH≌ΔEGH即可,然后根據(jù)題目中的條件和全等三角形的判定即可證明結(jié)論成立;
(3)首先寫出線段EC和CP的數(shù)量關(guān)系,然后利用全等三角形的判定和性質(zhì)即可證明結(jié)論成立.
解:(1)依題意補(bǔ)全圖形如下:
(2)∵點(diǎn)H為線段DG的中點(diǎn),
∴DH=GH.
在ΔPDH和ΔEGH中,
∵EH=PH,∠EHG=∠PHD,
∴ΔPDH≌ΔEGH(SAS).
∴DP=EG.
∵G為EF的中點(diǎn),
∴EF=2EG.
∵EF=2EB,
∴BE=EG=DP.
(3)猜想:EC=CP.
由(2)可知ΔPDH≌ΔEGH.
∴∠HEG=∠HPD.
∴DP∥EF.
∴∠PDC=∠DFE.
又∵∠BEF=∠BCD=90°,
∴∠EBC+∠EFC=180°.
又∵∠DFE+∠EFC=180°,
∴∠EBC=∠DFE=∠PDC.
∵BC=DC,DP=BE,
∴ΔEBC≌ΔPDC(SAS).
∴EC=PC.
故答案為:(1)詳見解析;(2)詳見解析;(3)詳見解析.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖A、B分別為數(shù)軸上的兩點(diǎn),A點(diǎn)對(duì)應(yīng)的數(shù)為-20,B點(diǎn)對(duì)應(yīng)的數(shù)為80.
(1)請(qǐng)寫出AB的中點(diǎn)M對(duì)應(yīng)的數(shù).
(2)現(xiàn)在有一只電子螞蟻P從B點(diǎn)出發(fā),以2個(gè)單位/秒的速度向左運(yùn)動(dòng),同時(shí)另一只電子螞蟻Q恰好從A點(diǎn)出發(fā),以3個(gè)單位/秒的速度向右運(yùn)動(dòng),設(shè)兩只電子螞蟻在數(shù)軸上的C點(diǎn)相遇,
①你知道經(jīng)過幾秒兩只電子螞蟻相遇?
②點(diǎn)C對(duì)應(yīng)的數(shù)是多少?
③經(jīng)過多長時(shí)間兩只電子螞蟻在數(shù)軸上相距15個(gè)單位長度?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線y=ax2+bx+3(a≠0)經(jīng)過點(diǎn)A(﹣1,0),B(,0),且與y軸相交于點(diǎn)C.
(1)求這條拋物線的表達(dá)式;
(2)求∠ACB的度數(shù);
(3)設(shè)點(diǎn)D是所求拋物線第一象限上一點(diǎn),且在對(duì)稱軸的右側(cè),點(diǎn)E在線段AC上,且DE⊥AC,當(dāng)△DCE與△AOC相似時(shí),求點(diǎn)D的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】 要比較a與b的大小,可以先求a與b的差,再看這個(gè)差是正數(shù)、負(fù)數(shù)還是零.由此可見,要判斷兩個(gè)式子值的大小,只要考慮它們的差就可以了.
已知A=16a2+a+15 , B=4a2+a+7 , C=a2+a+4.
請(qǐng)你按照上述文字提供的信息:(1)試比較A與2B的大小; (2)試比較2B與3C的大小.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(m,n),若點(diǎn)A′(m,n′)的縱坐標(biāo)滿足n′=,則稱點(diǎn)A′是點(diǎn)A的“絕對(duì)點(diǎn)”.
(1)點(diǎn)(3,2)的“絕對(duì)點(diǎn)”的坐標(biāo)為 .
(2)點(diǎn)P是函數(shù)y=4x-1的圖象上的一點(diǎn),點(diǎn)P′是點(diǎn)P的“絕對(duì)點(diǎn)”.若點(diǎn)P與點(diǎn)P′重合,求點(diǎn)P的坐標(biāo).
(3)點(diǎn)Q(a,b)的“絕對(duì)點(diǎn)”Q′是函數(shù)y=2x2的圖象上的一點(diǎn).當(dāng)0≤a≤2 時(shí),求線段QQ′的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把四張形狀大小完全相同的小長方形卡片(如圖①)不重疊地放在一個(gè)底面為長方形(長為m,寬為n)的盒子底部(如圖②),盒子底部未被卡片覆蓋的部分用陰影表示,則圖②中兩塊陰影部分周長和是_________(用代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)的位置如圖所示,點(diǎn)A′的坐標(biāo)是(﹣2,2),現(xiàn)將△ABC平移,使點(diǎn)A變換為點(diǎn)A′,點(diǎn)B′、C′分別是B、C的對(duì)應(yīng)點(diǎn).
(1)請(qǐng)畫出平移后的△A′B′C′(不寫畫法);
(2)并直接寫出點(diǎn)B′、C′的坐標(biāo):B′( )、C′( );
(3)若△ABC內(nèi)部一點(diǎn)P的坐標(biāo)為(a,b),則點(diǎn)P的對(duì)應(yīng)點(diǎn)P′的坐標(biāo)是( ).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(12分)菱形ABCD中,兩條對(duì)角線AC,BD相交于點(diǎn)O,∠MON+∠BCD=180°,∠MON繞點(diǎn)O旋轉(zhuǎn),射線OM交邊BC于點(diǎn)E,射線ON交邊DC于點(diǎn)F,連接EF.
(1)如圖1,當(dāng)∠ABC=90°時(shí),△OEF的形狀是 ;
(2)如圖2,當(dāng)∠ABC=60°時(shí),請(qǐng)判斷△OEF的形狀,并說明理由;
(3)在(1)的條件下,將∠MON的頂點(diǎn)移到AO的中點(diǎn)O′處,∠MO′N繞點(diǎn)O′旋轉(zhuǎn),仍滿足∠MO′N+∠BCD=180°,射線O′M交直線BC于點(diǎn)E,射線O′N交直線CD于點(diǎn)F,當(dāng)BC=4,且時(shí),直接寫出線段CE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在矩形紙片ABCD中,AB=3cm,AD=5cm,折疊紙片使B點(diǎn)落在邊AD上的E處,折痕為PQ,過點(diǎn)E作EF∥AB交PQ于F,連接BF.
(1)求證:四邊形BFEP為菱形;
(2)當(dāng)點(diǎn)E在AD邊上移動(dòng)時(shí),折痕的端點(diǎn)P、Q也隨之移動(dòng);
①當(dāng)點(diǎn)Q與點(diǎn)C重合時(shí)(如圖2),求菱形BFEP的邊長;
②若限定P、Q分別在邊BA、BC上移動(dòng),求出點(diǎn)E在邊AD上移動(dòng)的最大距離.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com