【題目】已知,把和按圖1擺放,點C與E點重合,點B、C、E、F始終在同一條直線上,,,,,,如圖2,從圖1的位置出發(fā),以每秒1個單位的速度沿CB方向勻速移動,同時,點P從A出發(fā),沿AB以每秒1個單位向點B勻速移動,AC與的直角邊相交于Q,當(dāng)P到達(dá)終點B時,同時停止運動連接PQ,設(shè)移動的時間為解答下列問題:
在平移的過程中,當(dāng)點D在的AC邊上時,求AB和t的值;
在移動的過程中,是否存在為等腰三角形?若存在,求出t的值;若不存在,說明理由.
【答案】(1)AB=10,時,點D在AC邊上;(2)當(dāng),,,時,是等腰三角形.
【解析】
作出輔助線,計算出,即可;
分情況討論先分成和兩種,每一種又要按邊分情況討論分,,即可.
作于如圖1,
在中,
,,,
,
,,
,
,
,
,
時,點D在AC邊上;
當(dāng),即直角邊DE與AC相交于Q點時,
由題意知:
當(dāng)時,
解得
如圖中,當(dāng)時,作于M,
則
經(jīng)探索:∽
,
即,
,
,
解得,
如圖中,當(dāng)時,作于N,
則,
經(jīng)探索:∽,
即,
;
當(dāng)時,即直角邊DF與AC相交于Q點時,
由題意知:,,,
當(dāng)時,
不存在
如圖中,當(dāng)時,作于G,
則,
∽
,
即,
;
如圖中,當(dāng)時,作于I,
則,
經(jīng)探索:∽,
,
即
舍去;
綜上所述:當(dāng),,,時,是等腰三角形.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB 為⊙O 的直徑,PD 切⊙O 于點 C,交 AB 的延長線于點 D,且∠D=2∠A.
(1)求∠D 的度數(shù);
(2)若⊙O 的半徑為 m,求 BD 的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是二次函數(shù)圖象的一部分,其對稱軸是,且過點,下列說法:;;;若,是拋物線上兩點,則,其中正確的有
A. 1個
B. 2個
C. 3個
D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在等邊三角形ABC中,BC=8cm,射線AG∥BC,點E從點A出發(fā)沿射線AG以1cm/s的速度運動,同時點F從點B出發(fā)沿射線BC以2cm/s的速度運動,設(shè)運動時間為t(s).
(1)連接EF,當(dāng)EF經(jīng)過AC邊的中點D時,求證:四邊形AFCE是平行四邊形;
(2)填空:①當(dāng)t為 s時,四邊形ACFE是菱形;
②當(dāng)t為 s時,△ACE的面積是△ACF的面積的2倍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程x2+(m+3)x+m+1=0.
(1)求證:無論m取何值,原方程總有兩個不相等的實數(shù)根;
(2)若x1,x2是原方程的兩根,且|x1-x2|=2,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)(x>0)的圖象交于A(2,﹣1),B(,n)兩點,直線y=2與y軸交于點C.
(1)求一次函數(shù)與反比例函數(shù)的解析式;
(2)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知一個二次函數(shù)的圖象經(jīng)過、、三點.
(1)求拋物線的解析式;
(2)求拋物線的對稱軸和頂點坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】 如圖所示,在平面直角坐標(biāo)系中,半徑均為1個單位長度的半圓O1,O2,O3,… 組成一條平滑的曲線,點P從原點O出發(fā),沿這條曲線向右運動,速度為每秒個單位長度,則第2015秒時,點P的坐標(biāo)是( ).
A.(2014,0) B.(2015,-1) C. (2015,1) D. (2016,0)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,△ABC的頂點都在小方格的格點上.
(1)點A的坐標(biāo)是 ;點C的坐標(biāo)是 ;
(2)以原點O為位似中心,將△ABC縮小,使變換后得到的△A1B1C1與△ABC對應(yīng)邊的比為1:2,請在網(wǎng)格中畫出△A1B1C1;
(3)△A1B1C1的面積為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com