【題目】下列命題中,①等腰三角形兩腰上的高相等;②在空間中,垂直于同一直線的兩直線平行;③兩條直線被第三條直線所截,內(nèi)錯(cuò)角相等;④一個(gè)角的兩邊與另一個(gè)角的兩邊分別平行, 則這兩個(gè)角相等. 其中真命題的個(gè)數(shù)有 __________個(gè).
【答案】1
【解析】
分析是否為真命題,需要分別分析各題設(shè)是否能推出結(jié)論,從而利用排除法得出答案.
解:(1)等腰三角形兩腰上的高相等,說法正確,故(1)是真命題;
(2)不在同一個(gè)平面內(nèi),垂直于同一條直線的兩條直線異面,故(2)說法錯(cuò)誤,故(2)是假命題;
(3)兩條直線不平行,內(nèi)錯(cuò)角不相等,故(3)說法錯(cuò)誤,故(3)是假命題;
(4)一個(gè)角的兩邊與另一個(gè)角的兩邊分別平行,則這兩個(gè)角相等或互補(bǔ),故(4)說法錯(cuò)誤,故(4)是假命題;
綜上所述:真命題的個(gè)數(shù)為1.
故選:.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=CB,∠ABC=90°,F為AB延長線上一點(diǎn),點(diǎn)E在BC上,且AE=CF.
(1)求證:△ABE≌△CBF;
(2)若∠CAE=30°,求∠ACF的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,CD、BE為高,AN為角平分線,OM平分∠BOC交BC于M.
(1) 若∠BAC=,求∠BOM;
(2) 求證: OM∥AN.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AD是△ABC的中線, DE⊥AB于E, DF⊥AC于F, 且BE=CF, 求證:(1)AD是∠BAC的平分線;(2)AB=AC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正比例函數(shù)的圖象與反比例函數(shù)的圖象交于A、B兩點(diǎn),過點(diǎn)A作AC垂直x軸于點(diǎn)C,連結(jié)BC.若△ABC的面積為2.
(1)求k的值;
(2)x軸上是否存在一點(diǎn)D,使△ABD為直角三角形?若存在,求出點(diǎn)D的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知中,記,.
(1)如圖,若平分,、分別是的外角和的平分線,,用含的代數(shù)式表示的度數(shù),用含的代數(shù)式表示的度數(shù),并說明理由.
(2)如圖,若點(diǎn) 為的三條內(nèi)角平分線的交點(diǎn),于點(diǎn) , 猜想(1)中的兩個(gè)結(jié)論是否發(fā)生變化,補(bǔ)全圖形并直接寫出你的結(jié)論.
.
.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法:
①在同一平面內(nèi),四條邊相等的四邊形一定是菱形。
②順次連接矩形各邊中點(diǎn)形成的四邊形一定是正方形。
③對角線相等的四邊形一定是矩形。
④經(jīng)過平行四邊形對角線交點(diǎn)的直線,一定能把平行四邊形分成面積相等的兩部分。
其中正確的有( )個(gè).
A.4B.3C.2D.1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法:①兩點(diǎn)之間,線段最短②③過個(gè)點(diǎn)可以畫無數(shù)多條直線,過個(gè)點(diǎn)也可以畫無數(shù)多條直線;④如果與是同類項(xiàng),那么與互為相反數(shù);⑤珠穆朗瑪峰是世界最高峰,它的海拔約為米,這個(gè)數(shù)字可以用科學(xué)記數(shù)法表示為;⑥某商店有兩個(gè)進(jìn)價(jià)不同的商品都賣了元,其中一個(gè)盈利,另一個(gè)虧損,所以這家商店在這次買賣中是賺了;其中,正確的是_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三角形ABC中,AB=AC,點(diǎn)D在△ABC內(nèi),且∠ADB=90°.
(1)如圖1,若∠BAD=30°,AD=3,點(diǎn)E、F分別為AB、BC邊的中點(diǎn),連接EF,求線段EF的長;
(2)如圖2,若△ABD繞頂點(diǎn)A逆時(shí)針旋轉(zhuǎn)一定角度后能與△ACG重合,連接GD并延長交BC于點(diǎn)H,連接AH,求證:∠DAH=∠DBH.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com