【題目】如圖1,點(diǎn)O為直線(xiàn)AB上一點(diǎn),過(guò)點(diǎn)O作射線(xiàn)OC,使∠AOC=60°,將一直角三角板MON的直角頂點(diǎn)放在點(diǎn)O處,一邊OM在射線(xiàn)OB上,另一邊ON在直線(xiàn)AB的下方.
(1)求∠CON的度數(shù);
(2)如圖2是將圖1中的三角板繞點(diǎn)O以每秒10°的速度沿逆時(shí)針?lè)较蛐D(zhuǎn)一周的情況.在旋轉(zhuǎn)的過(guò)程中,當(dāng)?shù)?/span>t秒時(shí),三條射線(xiàn)OA、OC、OM構(gòu)成相等的角,求此時(shí)t的值;
(3)將圖1中的三角板繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)至圖3,使ON在∠AOC的內(nèi)部時(shí),請(qǐng)?zhí)骄俊?/span>AOM與∠CON的數(shù)量關(guān)系,并說(shuō)明理由.
【答案】(1)150°;(2)6或15或24;(3)∠AOM﹣∠CON=30°,理由見(jiàn)解析
【解析】
(1)根據(jù)角的和差即可得到結(jié)論;
(2)在圖2中,要分三種情況討論:①當(dāng)∠AOC=∠COM=60°時(shí),②當(dāng)∠AOM=∠COM=30°時(shí),③當(dāng)∠AOC=∠AOM=60°時(shí),根據(jù)角的和差即可得到結(jié)論;
(3)當(dāng)ON在∠AOC內(nèi)部時(shí),根據(jù)角的和差即可得到結(jié)論.
解:(1)由圖1可知∠AOC=60°,∠AON=90°,
∴∠CON=∠AOC+∠AON=60°+90°=150°;
(2)在圖2中,要分三種情況討論:
①當(dāng)∠AOC=∠COM=60°時(shí),此時(shí)旋轉(zhuǎn)角∠BOM=60°,
由10°t=60°,解得t=6,
②當(dāng)∠AOM=∠COM=30°時(shí),此時(shí)旋轉(zhuǎn)角∠BOM=150°,
由10°t=150°,解得t=15;
③當(dāng)∠AOC=∠AOM=60°時(shí),此時(shí)旋轉(zhuǎn)角∠BOM=240°,
由10°t=240°,解得t=24.
綜上所述,得知t的值為6或15或24;
(3)當(dāng)ON在∠AOC內(nèi)部時(shí),∠AOM﹣∠CON=30°,
其理由是:設(shè)∠AON=x°,則有∠AOM=∠MON﹣∠AON=(90﹣x)°,
∠CON=∠AOC﹣∠AON=(60﹣x)°,
∴∠AOM﹣∠CON=(90﹣x)°﹣(60﹣x)°=30°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,一個(gè)點(diǎn)從數(shù)軸上的原點(diǎn)開(kāi)始,先向右移動(dòng)2個(gè)單位長(zhǎng)度,再向左移動(dòng)5個(gè)單位長(zhǎng)度,可以看到終點(diǎn)表示是-3,已知A、B是數(shù)軸上的點(diǎn),請(qǐng)參照下圖并思考,完成下列各題.
(1)如果點(diǎn)A表示的數(shù)-1,將點(diǎn)A向右移動(dòng)4個(gè)單位長(zhǎng)度,那么終點(diǎn)B表示的數(shù)是____.A、B兩點(diǎn)間的距離是__________.
(2)如果點(diǎn)A表示的數(shù)2,將點(diǎn)A向左移動(dòng)6個(gè)單位長(zhǎng)度,再向右移動(dòng)3個(gè)單位長(zhǎng)度,那么終點(diǎn)B表示的數(shù)是____.A、B兩點(diǎn)間的距離是____.
(3)如果點(diǎn)A表示的數(shù)m,將點(diǎn)A向左移動(dòng)n個(gè)單位長(zhǎng)度,再向左移動(dòng)p個(gè)單位長(zhǎng)度,那么請(qǐng)你猜想終點(diǎn)B表示的數(shù)是___.A、B兩點(diǎn)間的距離是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在數(shù)軸上有A、B、C、D四個(gè)點(diǎn),分別對(duì)應(yīng)的數(shù)為a,b,c,d,且滿(mǎn)足a,b到點(diǎn) -7的距離為1 (a<b),且(c﹣12)2與|d﹣16|互為相反數(shù).
(1)填空:a= 、b= 、c= 、d= ;
(2)若線(xiàn)段AB以3個(gè)單位/秒的速度向右勻速運(yùn)動(dòng),同時(shí)線(xiàn)段CD以1單位長(zhǎng)度/秒向左勻速運(yùn)動(dòng),并設(shè)運(yùn)動(dòng)時(shí)間為t秒,A、B兩點(diǎn)都運(yùn)動(dòng)在CD上(不與C,D兩個(gè)端點(diǎn)重合),若BD=2AC,求t得值;
(3)在(2)的條件下,線(xiàn)段AB,線(xiàn)段CD繼續(xù)運(yùn)動(dòng),當(dāng)點(diǎn)B運(yùn)動(dòng)到點(diǎn)D的右側(cè)時(shí),問(wèn)是否存在時(shí)間t,使BC=3AD?若存在,求t得值;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,動(dòng)點(diǎn)M、N同時(shí)從原點(diǎn)出發(fā)沿?cái)?shù)軸做勻速運(yùn)動(dòng),己知?jiǎng)狱c(diǎn)M、N的運(yùn)動(dòng)速度比是1:2(速度單位:1個(gè)單位長(zhǎng)度/秒),設(shè)運(yùn)動(dòng)時(shí)間為t秒.
(1)若動(dòng)點(diǎn)M向數(shù)軸負(fù)方向運(yùn)動(dòng),動(dòng)點(diǎn)N向數(shù)軸正方向運(yùn)動(dòng),當(dāng)t=2秒時(shí),動(dòng)點(diǎn)M運(yùn)動(dòng)到A點(diǎn),動(dòng)點(diǎn)N運(yùn)動(dòng)到B點(diǎn),且AB=12(單位長(zhǎng)度).
①在數(shù)軸上畫(huà)出A、B兩點(diǎn)的位置,并回答:點(diǎn)M運(yùn)動(dòng)的速度是 (單位長(zhǎng)度/秒);點(diǎn)N運(yùn)動(dòng)的速度是 (單位長(zhǎng)度/秒).
②若點(diǎn)P為數(shù)軸上一點(diǎn),且PA﹣PB=OP,求的值;
(2)由(1)中A、B兩點(diǎn)的位置開(kāi)始,若M、N同時(shí)再次開(kāi)始按原速運(yùn)動(dòng),且在數(shù)軸上的運(yùn)動(dòng)方向不限,再經(jīng)過(guò)幾秒,MN=4(單位長(zhǎng)度)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】【操作發(fā)現(xiàn)】如圖 1,△ABC 為等邊三角形,點(diǎn) D 為 AB 邊上的一點(diǎn),∠DCE=30°,將線(xiàn)段 CD 繞點(diǎn) C 順時(shí)針旋轉(zhuǎn) 60°得到線(xiàn)段 CF,連接 AF、EF. 請(qǐng)直接 寫(xiě)出下列結(jié)果:
① ∠EAF的度數(shù)為__________;
② DE與EF之間的數(shù)量關(guān)系為__________;
【類(lèi)比探究】如圖 2,△ABC 為等腰直角三角形,∠ACB=90°,點(diǎn) D 為 AB 邊上的一點(diǎn)∠DCE=45°,將線(xiàn)段 CD 繞點(diǎn) C 順時(shí)針旋轉(zhuǎn) 90°得到線(xiàn)段 CF,連接 AF、EF.
①則∠EAF的度數(shù)為__________;
② 線(xiàn)段 AE,ED,DB 之間有什么數(shù)量關(guān)系?請(qǐng)說(shuō)明理由;
【實(shí)際應(yīng)用】如圖 3,△ABC 是一個(gè)三角形的余料.小張同學(xué)量得∠ACB=120°,AC=BC, 他在邊 BC 上取了 D、E 兩點(diǎn),并量得∠BCD=15°、∠DCE=60°,這樣 CD、CE 將△
ABC 分成三個(gè)小三角形,請(qǐng)求△BCD、△DCE、△ACE 這三個(gè)三角形的面積之比.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某自行車(chē)廠(chǎng)一周計(jì)劃生產(chǎn)輛自行車(chē),平均每天生產(chǎn)輛,由于各種原因?qū)嶋H每天生產(chǎn)量與計(jì)劃量相比有出入,下表是某周的生產(chǎn)情況(超產(chǎn)為正,減產(chǎn)為負(fù));
星期 | 一 | 二 | 三 | 四 | 五 | 六 | 日 |
增減 |
根據(jù)記錄可知前三天共生產(chǎn)________輛;
產(chǎn)量最多的一天比產(chǎn)量最少的一天多生產(chǎn)________輛;
該廠(chǎng)實(shí)行計(jì)件工資制,每輛車(chē)元,超額完成任務(wù)每輛獎(jiǎng)元,少生產(chǎn)一輛扣元,那么該廠(chǎng)工人這一周的工資總額是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,如圖,在四邊形ABCD中,AB∥CD,E,F(xiàn)為對(duì)角線(xiàn)AC上兩點(diǎn),且AE=CF,DF∥BE,AC平分∠BAD.求證:四邊形ABCD為菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形ABCD中,E是對(duì)角線(xiàn)BD上一點(diǎn),且滿(mǎn)足BE=AD,連接CE并延長(zhǎng)交AD于點(diǎn)F,連接AE,過(guò)B點(diǎn)作BG⊥AE于點(diǎn)G,延長(zhǎng)BG交AD于點(diǎn)H.在下列結(jié)論中:①AH=DF;②∠AEF=45°;③S四邊形EFHG=S△DEF+S△AGH;④BH平分∠ABE.其中不正確的結(jié)論有( )
A. 1個(gè)B. 2個(gè)C. 3個(gè)D. 4個(gè)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com