【題目】如圖,正方形ABCO的邊OA、OC在坐標(biāo)軸上,點B坐標(biāo)為(6,6),將正方形ABCO繞點C逆時針旋轉(zhuǎn)角度α(0°<α<90°),得到正方形CDEF,ED交線段AB于點G,ED的延長線交線段OA于點H,連結(jié)CH、CG

(1)求證:CG平分∠DCB;

(2)在正方形ABCO繞點C逆時針旋轉(zhuǎn)的過程中,求線段HG、OHBG之間的數(shù)量關(guān)系;

(3)連結(jié)BD、DA、AE、EB,在旋轉(zhuǎn)的過程中,四邊形AEBD是否能在點G滿足一定的條件下成為矩形?若能,試求出直線DE的解析式;若不能,請說明理由.

【答案】1)見解析;(2HGOH+BG;(3)能成矩形,y

【解析】

(1)根據(jù)旋轉(zhuǎn)和正方形的性質(zhì)可得出CDCB,∠CDG=∠CBG=90,根據(jù)全等直角三角形的判定定理(HL)即可證出Rt△CDG≌Rt△CBG即∠DCG=∠BCG,由此即可得出CG平分∠DCB;

(2)由(1)的Rt△CDG≌Rt△CBG可得出BGDG,根據(jù)全等直角三角形的判定定理(HL)即可證出Rt△CHO≌Rt△CHD,OHHD,再根據(jù)線段間的關(guān)系即可得出HGHD+DGOH+BG

(3)根據(jù)(2)的結(jié)論即可找出當(dāng)G點為AB中點時,四邊形AEBD為矩形,再根據(jù)正方形的性質(zhì)以及點B的坐標(biāo)可得出點G的坐標(biāo)設(shè)H點的坐標(biāo)為(x,0),由此可得出HOx,根據(jù)勾股定理即可求出x的值,即可得出點H的坐標(biāo)結(jié)合點H、G的坐標(biāo)利用待定系數(shù)法即可求出直線DE的解析式

1)∵正方形ABCO繞點C旋轉(zhuǎn)得到正方形CDEF,∴CDCB,∠CDG=∠CBG=90°.在Rt△CDGRt△CBG中,∵,∴Rt△CDG≌Rt△CBG(HL),∴∠DCG=∠BCGCG平分∠DCB

(2)由(1)證得:Rt△CDG≌Rt△CBG,∴BGDG.在Rt△CHORt△CHD中,∵,∴Rt△CHO≌Rt△CHD(HL),∴OHHD,∴HGHD+DGOH+BG

(3)假設(shè)四邊形AEBD可為矩形

當(dāng)G點為AB中點時,四邊形AEBD為矩形如圖所示

G點為AB中點,∴BGGAAB,由(2)證得BGDG,BGGADGABDEGE,ABDE,∴四邊形AEBD為矩形,∴AGEGBGDG

AGAB=3,∴G點的坐標(biāo)為(6,3).

設(shè)H點的坐標(biāo)為(x,0),HOx,∴HDx,DG=3.

Rt△HGA,HGx+3,GA=3,HA=6﹣x,由勾股定理得:(x+3)2=32+(6﹣x2,解得x=2,∴H點的坐標(biāo)為(2,0).

設(shè)直線DE的解析式為ykx+bk≠0),將點H(2,0)、G(6,3)代入ykx+b,,解得∴直線DE的解析式為y

故四邊形AEBD能為矩形,此時直線DE的解析式為y

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】探究題:

1三條直線相交,最少有__________個交點最多有__________個交點,分別畫出圖形,并數(shù)出圖形中的對頂角和鄰補角的對數(shù);

2四條直線相交,最少有__________個交點,最多有__________個交點,分別畫出圖形,并數(shù)出圖形中的對頂角和鄰補角的對數(shù);

3依次類推n條直線相交,最少有__________個交點,最多有__________個交點,對頂角有__________,鄰補角有__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】母親節(jié)前期,某花店購進康乃馨和玫瑰兩種鮮花,銷售過程中發(fā)現(xiàn)康乃馨比玫瑰銷售量大,店主決定將玫瑰每枝降價1元促銷,降價后30元可購買玫瑰的數(shù)量是原來購買玫瑰數(shù)量的1.5倍,求降價后每枝玫瑰的售價是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】學(xué)習(xí)全等三角形的判定方法以后,我們知道已知兩邊和一角分別相等的兩個三角形不一定全等,但下列兩種情形還是成立的.

(1)第一情形(如圖1)在△ABC和△DEF中,∠C=F=90°,AC=DF,AB=DE,則根據(jù)__________,得出△ABC≌△DEF;

(2)第二情形(如圖2)在△ABC和△DEF中,∠C=F(C和∠F均為鈍角),AC=DF,AB=DE,求證:△ABC≌△DEF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖以正方形ABCDB點為坐標(biāo)原點.BC所在直線為x軸,BA所在直線為y軸,建立直角坐標(biāo)系.設(shè)正方形ABCD的邊長為6,順次連接OA、OBOC、OD的中點A1B1、C1D1,得到正方形A1B1C1D1,再順次連接OA1、OB1、OC1、OD1的中點得到正方形A2B2C2D2.按以上方法依次得到正方形A1B1C1D1,……AnBnCnDn,(n為不小于1的自然數(shù)),設(shè)An點的坐標(biāo)為(xnyn),則xn+yn=______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有這樣一個問題:探究同一平面直角坐標(biāo)系中系數(shù)互為倒數(shù)的正、反比例函數(shù)y= x與y= (k≠0)的圖象性質(zhì).
小明根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗,對函數(shù)y= x與y= ,當(dāng)k>0時的圖象性質(zhì)進行了探究.
下面是小明的探究過程:

(1)如圖所示,設(shè)函數(shù)y= x與y= 圖象的交點為A,B,已知A點的坐標(biāo)為(﹣k,﹣1),則B點的坐標(biāo)為;
(2)若點P為第一象限內(nèi)雙曲線上不同于點B的任意一點.
①設(shè)直線PA交x軸于點M,直線PB交x軸于點N.求證:PM=PN.
證明過程如下,設(shè)P(m, ),直線PA的解析式為y=ax+b(a≠0).
,
解得
∴直線PA的解析式為
請你把上面的解答過程補充完整,并完成剩余的證明.
②當(dāng)P點坐標(biāo)為(1,k)(k≠1)時,判斷△PAB的形狀,并用k表示出△PAB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線AB,CD,OE⊥AB,過點O畫直線MN⊥CD. 若點F是直線MN上任意一點(O除外),且∠AOC=34°.求∠EOF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明參加某個智力競答節(jié)目,答對最后兩道單選題就順利通關(guān).第一道單選題有3個選項,第二道單選題有4個選項,這兩道題小明都不會,不過小明還有一個“求助”沒有用(使用“求助”可以讓主持人去掉其中一題的一個錯誤選項).
(1)如果小明第一題不使用“求助”,那么小明答對第一道題的概率是
(2)如果小明將“求助”留在第二題使用,請用樹狀圖或者列表來分析小明順利通關(guān)的概率.
(3)從概率的角度分析,你建議小明在第幾題使用“求助”.(直接寫出答案)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】圖甲,四邊形OABC的邊OA、OC分別在x軸、y軸的正半軸上,頂點在B點的拋物線交x軸于點A、D,交y軸于點E,連結(jié)AB、AE、BE.已知tan∠CBE= ,A(3,0),D(﹣1,0),E(0,3).

(1)求拋物線的解析式及頂點B的坐標(biāo);
(2)求證:CB是△ABE外接圓的切線;
(3)試探究坐標(biāo)軸上是否存在一點P,使以D、E、P為頂點的三角形與△ABE相似,若存在,求出點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案