【題目】某水果店在兩周內(nèi),將標(biāo)價(jià)為10元/斤的某種水果,經(jīng)過(guò)兩次降價(jià)后的價(jià)格為8.1元/斤,并且兩次降價(jià)的百分率相同.
(1)求該種水果每次降價(jià)的百分率;
(2)從第一次降價(jià)的第1天算起,第x天(x為整數(shù))的售價(jià)、銷(xiāo)量及儲(chǔ)存和損耗費(fèi)用的相關(guān)信息如表所示.已知該種水果的進(jìn)價(jià)為4.1元/斤,設(shè)銷(xiāo)售該水果第x(天)的利潤(rùn)為y(元),求y與x(1≤x≤14)之間的函數(shù)關(guān)系式,并求出第幾天時(shí)銷(xiāo)售利潤(rùn)最大?
【答案】(1)10%;(2) ,第10天利潤(rùn)最大
【解析】
(1)設(shè)這個(gè)百分率是x,根據(jù)某商品原價(jià)為10元,由于各種原因連續(xù)兩次降價(jià),降價(jià)后的價(jià)格為8.1元,可列方程求解;
(2)根據(jù)兩個(gè)取值先計(jì)算,當(dāng)1≤x≤7時(shí),當(dāng)8≤x≤14時(shí),由利潤(rùn)=(售價(jià)-進(jìn)價(jià))×銷(xiāo)售量-費(fèi)用列函數(shù)關(guān)系式,并根據(jù)增減性求最大值,做對(duì)比.
解:(1)設(shè)該種水果每次降價(jià)的百分率是x,
10(1﹣x)2=8.1,
x=10%或x=190%(舍去),
答:該種水果每次降價(jià)的百分率是10%;
(2)當(dāng)1≤x≤7時(shí),第1次降價(jià)后的價(jià)格:10×(1﹣10%)=9,
∴y=(9﹣4.1)(80﹣3x)﹣(40+3x)
=﹣17.7x+352,
∵﹣17.7<0,
∴y隨x的增大而減小,
∴當(dāng)x=1時(shí),y有最大值,y大=﹣17.7×1+352=334.3(元),
當(dāng)8≤x≤14時(shí),第2次降價(jià)后的價(jià)格:8.1元,
∴y=(8.1﹣4.1)(120﹣x)﹣(3x2﹣64x+400)
=﹣3x2+60x+80
=﹣3(x﹣10)2+380,
∴當(dāng)x=10時(shí),y有最大值,y大=380(元),
綜上所述,y與x(1≤x<15)之間的函數(shù)關(guān)系式為:
第10天的利潤(rùn)最大.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某超市銷(xiāo)售一種商品,成本每千克40元,規(guī)定每千克售價(jià)不低于成本,且不高于80元,經(jīng)市場(chǎng)調(diào)查,每天的銷(xiāo)售量y(千克)與每千克售價(jià)x(元)滿(mǎn)足一次函數(shù)關(guān)系,部分?jǐn)?shù)據(jù)如下表:
售價(jià)x(元/千克) | 50 | 60 | 70 |
銷(xiāo)售量y(千克) | 100 | 80 | 60 |
(1)求y與x之間的函數(shù)表達(dá)式;
(2)設(shè)商品每天的總利潤(rùn)為W(元),則當(dāng)售價(jià)x定為多少元時(shí),廠(chǎng)商每天能獲得最大利潤(rùn)?最大利潤(rùn)是多少?
(3)如果超市要獲得每天不低于1350元的利潤(rùn),且符合超市自己的規(guī)定,那么該商品每千克售價(jià)的取值范圍是多少?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知在平面直角坐標(biāo)系xOy中,Rt△OAB的直角頂點(diǎn)B在x軸的正半軸上,點(diǎn)A在第一象限,反比例函數(shù)y=(x>0)的圖象經(jīng)過(guò)OA的中點(diǎn)C.交AB于點(diǎn)D,連結(jié)CD.若△ACD的面積是2,則k的值是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,AB為⊙O的直徑,AB=10,AC=6,連結(jié)OC,弦AD分別交OC,BC于點(diǎn)E,F,其中點(diǎn)E是AD的中點(diǎn).
(1)求證:∠CAD=∠CBA.
(2)求OE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,以BC為直徑的圓分別交邊AC、AB于D、E兩點(diǎn),連接BD、DE.若BD平分∠ABC,則下列結(jié)論不一定成立的是( )
A. BD⊥AC B. AC2=2ABAE C. △ADE是等腰三角形 D. BC=2AD
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,∠MON =∠ACB = 90°,AC = BC,AB =5,△ABC頂點(diǎn)A、C分別在ON、OM上,點(diǎn)D是AB邊上的中點(diǎn),當(dāng)點(diǎn)A在邊ON上運(yùn)動(dòng)時(shí),點(diǎn)C隨之在邊OM上運(yùn)動(dòng),則OD的最大值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知拋物線(xiàn)與x軸交于A(-1,0),B(3,0)兩點(diǎn),與y軸交于點(diǎn)C.
(1)求該拋物線(xiàn)的解析式;
(2)如圖①,若點(diǎn)D是拋物線(xiàn)上一動(dòng)點(diǎn),設(shè)點(diǎn)D的橫坐標(biāo)為m(0<m<3),連接CD,BD,BC,AC,當(dāng)△BCD的面積等于△AOC面積的2倍時(shí),求m的值;
(3)若點(diǎn)N為拋物線(xiàn)對(duì)稱(chēng)軸上一點(diǎn),請(qǐng)?jiān)趫D②中探究拋物線(xiàn)上是否存在點(diǎn)M,使得以B,C,M,N為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)直接寫(xiě)出所有滿(mǎn)足條件的點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商店購(gòu)進(jìn)一批成本為每件40元的商品,若商店按單價(jià)不低于成本價(jià),且不高于70元銷(xiāo)售,且銷(xiāo)售單價(jià)為正整數(shù),經(jīng)調(diào)查發(fā)現(xiàn),該商品每天的銷(xiāo)售量y(件)與銷(xiāo)售單價(jià)x(元)之間的關(guān)系如表:
銷(xiāo)售單價(jià)x/元 | 40 | 50 | 60 | 70 |
每天的銷(xiāo)售量y/件 | 140 | 120 | 100 | 80 |
(1)請(qǐng)你認(rèn)真分析表中所給的數(shù)據(jù),用你學(xué)過(guò)的一次函數(shù)、反比例函數(shù)和二次函數(shù)中的一種來(lái)表示y與x之間的變化規(guī)律,說(shuō)明選擇這種函數(shù)的理由,并求出它的函數(shù)表達(dá)式和自變量的取值范圈.
(2)銷(xiāo)售單價(jià)定為多少元時(shí),才能使銷(xiāo)售該商品每天獲得的利潤(rùn)最大?最大利潤(rùn)是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】實(shí)驗(yàn)探究:
(1)如圖1,對(duì)折矩形紙片ABCD,使AD與BC重合,得到折痕EF,把紙片展開(kāi);再一次折疊紙片,使點(diǎn)A落在EF上,并使折痕經(jīng)過(guò)點(diǎn)B,得到折痕BM,同時(shí)得到線(xiàn)段BN,MN.請(qǐng)你觀(guān)察圖1,猜想∠MBN的度數(shù)是多少,并證明你的結(jié)論.
(2)將圖1中的三角形紙片BMN剪下,如圖2,折疊該紙片,探究MN與BM的數(shù)量關(guān)系,寫(xiě)出折疊方案,并結(jié)合方案證明你的結(jié)論.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com