【題目】如圖,在矩形ABCD內(nèi)有一點(diǎn)F,F(xiàn)BFC分別平分∠ABC和∠BCD,點(diǎn)E為矩形ABCD外一點(diǎn),連接BE,CE.現(xiàn)添加下列條件:①EBCF,CEBF;BE=CE,BE=BF;BECF,CEBE;BE=CE,CEBF,其中能判定四邊形BECF是正方形的共有( 。

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

【答案】D

【解析】

根據(jù)題意可得CF=BF,∠F=90°,根據(jù)平行四邊形與正方形的的判定即可判斷;根據(jù)菱形與正方形的判定即可判斷;根據(jù)矩形與正方形的判定即可判斷;根據(jù)正方形的判定即可判斷.

∵四邊形ABCD是矩形,

∴∠DCB=∠ABC=90°,

∵FBFC分別平分∠ABC和∠BCD,

∴∠FCB=∠DCB=45°,∠FBC=∠ABC=45°,

∴∠FCB=∠FBC=45°,

∴CF=BF,∠F=180°﹣45°﹣45°=90°,

①∵EB∥CF,CE∥BF,

∴四邊形BFCE是平行四邊形,

∵CF=BF,∠F=90°,

∴四邊形BFCE是正方形,故①正確;

∵BE=CE,BF=BE,CF=BF,

∴BF=CF=CE=BE,

∴四邊形BFCE是菱形,

∵∠F=90°,

∴四邊形BFCE是正方形,故②正確;

∵BE∥CF,CE⊥BE,

∴CF⊥CE,

∴∠FCE=∠E=∠F=90°,

∴四邊形BFCE是矩形,

∵BF=CF,

∴四邊形BFCE是正方形,故③正確;

∵CE∥BF,∠FBC=∠FCB=45°,

∴∠ECB=∠FBC=45°,∠EBC=∠FCB=45°,

∵∠F=90°,

∴∠FCE=∠FBE=∠F=90°,

∵BF=CF,

∴四邊形BFCE是正方形,故④正確;

即正確的個(gè)數(shù)是4個(gè).

故選:D.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,對(duì)于點(diǎn)與圖形,若點(diǎn)為圖形上任意一點(diǎn), 點(diǎn)關(guān)于第一、三象限角平分線的對(duì)稱點(diǎn)為 ,且線段的中點(diǎn)為,則稱點(diǎn)是圖形關(guān)于點(diǎn)的“關(guān)聯(lián)點(diǎn)”

1)如圖1,若點(diǎn)是點(diǎn)關(guān)于原點(diǎn)的關(guān)聯(lián)點(diǎn),則點(diǎn)的坐標(biāo)為

2)如圖2,在中,

①將線段向右平移個(gè)單位長(zhǎng)度,若平移后的線段上存在兩個(gè)關(guān)于點(diǎn)的關(guān)聯(lián)點(diǎn),則的取值范圍是

②已知點(diǎn)和點(diǎn),若線段上存在關(guān)于點(diǎn)的關(guān)聯(lián)點(diǎn),求的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,它與x軸的兩個(gè)交點(diǎn)分別為(-1,0),(3,0).對(duì)于下列命題:①b-2a=0;abc<0;4a-2b+c<0.其中正確的有( 。

A. 3個(gè) B. 2個(gè) C. 1個(gè) D. 0個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】△ABC中,∠BAC=90°,AB=AC,點(diǎn)D為直線BC上一動(dòng)點(diǎn)(點(diǎn)D不與B,C重合),以AD為邊在AD右側(cè)作正方形ADEF,連接CF.

(1)觀察猜想

如圖1,當(dāng)點(diǎn)D在線段BC上時(shí),

①BC與CF的位置關(guān)系為:   

②BC,CD,CF之間的數(shù)量關(guān)系為:   ;(將結(jié)論直接寫在橫線上)

(2)數(shù)學(xué)思考

如圖2,當(dāng)點(diǎn)D在線段CB的延長(zhǎng)線上時(shí),結(jié)論①,②是否仍然成立?若成立,請(qǐng)給予證明;若不成立,請(qǐng)你寫出正確結(jié)論再給予證明.

(3)拓展延伸

如圖3,當(dāng)點(diǎn)D在線段BC的延長(zhǎng)線上時(shí),延長(zhǎng)BA交CF于點(diǎn)G,連接GE.若已知AB=2,CD=BC,請(qǐng)求出GE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是O的直徑,弦CDAB,垂足為H,連結(jié)AC,過上一點(diǎn)E作EGAC交CD的延長(zhǎng)線于點(diǎn)G,連結(jié)AE交CD于點(diǎn)F,且EG=FG,連結(jié)CE.

(1)求證:ECF∽△GCE;

(2)求證:EG是O的切線;

(3)延長(zhǎng)AB交GE的延長(zhǎng)線于點(diǎn)M,若tanG=,AH=,求EM的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,菱形ABCD中,點(diǎn)E,F(xiàn),G,H分別在邊AB,BC,CD,DA上,且BE=BF=DH=DG.

(1)求證:四邊形EFGH是矩形;

(2)已知∠B=60°,AB=6.

請(qǐng)從A,B兩題中任選一題作答,我選擇   題.

A題:當(dāng)點(diǎn)EAB的中點(diǎn)時(shí),矩形EFGH的面積是   

B題:當(dāng)BE=   時(shí),矩形EFGH的面積是8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,CN是等邊的外角內(nèi)部的一條射線,點(diǎn)A關(guān)于CN的對(duì)稱點(diǎn)為D,連接ADBD,CD,其中AD,BD分別交射線CN于點(diǎn)E,P

(1)依題意補(bǔ)全圖形;

2)若,求的大。ㄓ煤的式子表示);

3)用等式表示線段, 之間的數(shù)量關(guān)系,并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線AB分別與x軸、y軸交于點(diǎn)B、C,與直線OA交于點(diǎn)A.已知點(diǎn)A的坐標(biāo)為(﹣3,5),OC4

1)分別求出直線AB、AO的解析式;

2)求ABO的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,直線AB軸交于點(diǎn)A,與軸交于點(diǎn)B,與直線OC交于點(diǎn)C

1)若直線AB解析式為,

求點(diǎn)C的坐標(biāo);

△OAC的面積.

2)如圖2,作的平分線ON,若AB⊥ON,垂足為E, OA4,P、Q分別為線段OAOE上的動(dòng)點(diǎn),連結(jié)AQPQ,試探索AQPQ是否存在最小值?若存在,求出這個(gè)最小值;若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案