每個(gè)小方格都是邊長(zhǎng)為1個(gè)單位長(zhǎng)度的正方形,在建立平面直角坐標(biāo)系后,△ABC的頂點(diǎn)均在格點(diǎn)上,

① 把△ABC向上平移5個(gè)單位后得到對(duì)應(yīng)的△A1B1C1,畫(huà)出△A1B1C1

② 以原點(diǎn)O為對(duì)稱(chēng)中心,再畫(huà)出與△A1B1C1關(guān)于原點(diǎn)O對(duì)稱(chēng)的△A2B2C2,。

 

【答案】

【解析】(1)根據(jù)平移的特征作出圖形;

(2)根據(jù)中心對(duì)稱(chēng)圖形的特征作出圖形。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

22、如圖,方格紙中的每個(gè)小方格都是邊長(zhǎng)為1個(gè)單位的正方形,在建立平面直角坐標(biāo)系后,△ABC的頂點(diǎn)均在格點(diǎn)上,點(diǎn)C的坐標(biāo)為(2,-1).
(1)把△ABC先向上平移4個(gè)單位得△A1B1C1,再沿x軸翻折得△A2B2C2,請(qǐng)?jiān)诰W(wǎng)格中畫(huà)出△A2B2C2,并寫(xiě)出C2的坐標(biāo).
(2)以原點(diǎn)為位似中心,在第二象限內(nèi)畫(huà)出△ABC的位似圖形△A3B3C3,且△A3B3C3與△ABC的相似比為2,并寫(xiě)出C3的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,方格紙中的每個(gè)小方格都是邊長(zhǎng)為1個(gè)單位的正方形,Rt△ABC的頂點(diǎn)均在格點(diǎn)上,在建立平面直角坐標(biāo)系后,點(diǎn)A的坐標(biāo)為(-6,1),點(diǎn)B的坐標(biāo)為(-3,1),點(diǎn)C的坐標(biāo)為(-3,3).
(1)將Rt△ABC沿x軸正方向平移8個(gè)單位得到Rt△A1B1C1,試在圖上畫(huà)出的圖形Rt△A1B1C1的圖形,并寫(xiě)出點(diǎn)A1的坐標(biāo);
(2)將原來(lái)的Rt△ABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°得到Rt△A2B2C2,試在圖上畫(huà)出Rt△A2B2C2的圖形.并求點(diǎn)B經(jīng)過(guò)的路徑長(zhǎng).(結(jié)果保留π)
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

圖1、圖2分別是6×6的正方形網(wǎng)格,,每個(gè)小方格都是邊長(zhǎng)為1的正方形,點(diǎn)A,B是方格紙的兩個(gè)格點(diǎn)(即正方形的頂點(diǎn)).
(1)在圖1中確定格點(diǎn)C,并畫(huà)出△ABC,使其是面積為1個(gè)平方單位的鈍角三角形.
(2)在圖2中確定格點(diǎn)C,并畫(huà)出△ABC,使其是面積為1個(gè)平方單位的軸對(duì)稱(chēng)三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•汕頭模擬)如圖,方格紙中的每個(gè)小方格都是邊長(zhǎng)為1的正方形,我們把以格點(diǎn)間連線為邊的三角形稱(chēng)為“格點(diǎn)三角形”,圖中的△ABC是格點(diǎn)三角形.
(1)把△ABC向左平移8格后得到△A1B1C1,畫(huà)△A1B1C1的圖形;
(2)把△ABC以點(diǎn)A為位似中心放大,使放大前后對(duì)應(yīng)邊長(zhǎng)的比為1:2,畫(huà)出△A2B2C2的圖形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知在正方形網(wǎng)格中,每個(gè)小方格都是邊長(zhǎng)為1的正方形,A、B兩點(diǎn)在小方格的頂點(diǎn)上,位置如圖所示.若點(diǎn)C、D也在小方格的頂點(diǎn)上,這四點(diǎn)正好是一個(gè)平行四邊形的四個(gè)頂點(diǎn),且這個(gè)平行四邊形的面積恰好為2,則這樣的平行四邊形有
6
6
個(gè).

查看答案和解析>>

同步練習(xí)冊(cè)答案