【題目】已知:如圖,在梯形ABCD中,AD∥BC,AD=24cm,BC=30cm,點P自點AD1cm/s的速度運動,到D點即停止.點Q自點CB2cm/s的速度運動,到B點即停止,直線PQ截梯形為兩個四邊形.問當P,Q同時出發(fā),幾秒時其中一個四邊形為平行四邊形?

【答案】8秒或10秒時,其中一個四邊形是平行四邊形.

【解析】試題分析:若四邊形PDCQ或四邊形APQB是平行四邊形,那么QD=CQAP=BQPD=BQ,根據(jù)這個結論列出方程就可以求出時間.

試題解析:設P,Q同時出發(fā)t秒后四邊形PDCQ或四邊形APQB是平行四邊形,根據(jù)已知得到AP=t,PD=24t,CQ=2t,BQ=302t.

(1)若四邊形PDCQ是平行四邊形,則PD=CQ,

24t=2t,

t=8,

8秒后四邊形PDCQ是平行四邊形;

(2)若四邊形APQB是平行四邊形,則AP=BQ,

t=302t,

t=10,

10秒后四邊形APQB是平行四邊形.

∴出發(fā)后8秒或10秒其中一個是平行四邊形.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某農(nóng)場擬建三件矩形飼養(yǎng)室,飼養(yǎng)室一面靠現(xiàn)有墻(墻可用長≤20m),中間用兩道墻隔開,已知計劃中的建筑材料可建圍墻的總長為60m,設飼養(yǎng)室寬為x(m),總占地面積為y(m2)(如圖所示).

(1)求y關于x的函數(shù)表達式,并直接寫出自變量x的取值范圍;
(2)三間飼養(yǎng)室占地總面積有可能達到210m2嗎?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知ABC的三個頂點的坐標分別為A﹣5,0)、B﹣2,3)、C﹣10

(1)畫出ABC關于坐標原點O成中心對稱的A1B1C1;

(2)ABC繞坐標原點O順時針旋轉90°畫出對應的A′B′C′,

(3)若以A′B′、C′D′為頂點的四邊形為平行四邊形,請直接寫出在第四象限中的D′坐標

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】2013年4月20日,四川雅安發(fā)生7.0級地震,給雅安人民的生命財產(chǎn)帶來巨大損失.某市民政部門將租用甲、乙兩種貨車共16輛,把糧食266噸、副食品169噸全部運到災區(qū).已知一輛甲種貨車同時可裝糧食18噸、副食品10噸;一輛乙種貨車同時可裝糧食16噸、副食11噸.
(1)若將這批貨物一次性運到災區(qū),有哪幾種租車方案?
(2)若甲種貨車每輛需付燃油費1500元;乙種貨車每輛需付燃油費1200元,應選(1)中的哪種方案,才能使所付的費用最少?最少費用是多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在Rt△ABC中,∠C=90°,AC=4cm,BC=3cm.動點M,N從點C同時出發(fā),均以每秒1cm的速度分別沿CA、CB向終點A,B移動,同時動點P從點B出發(fā),以每秒2cm的速度沿BA向終點A移動,連接PM,PN,設移動時間為t(單位:秒,0<t<2.5).

(1)當t為何值時,以A,P,M為頂點的三角形與△ABC相似?
(2)是否存在某一時刻t,使四邊形APNC的面積S有最小值?若存在,求S的最小值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將連續(xù)的奇數(shù)1,3,5,7…按圖1中的方式排成一個數(shù)表,用一個十字框框住5個數(shù),這樣框出的任意5個數(shù)(如圖2)分別用a,b,c,d,x表示.

(1)若x=17,則a+b+c+d=   

(2)移動十字框,用x表示a+b+c+d=   

(3)設M=a+b+c+d+x,判斷M的值能否等于2020,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】觀察下列等式的規(guī)律,解答下列問題:

a1=,a2=),a3=),a4=),…….

(1)第5個等式為   ;第n個等式為   (用含n的代數(shù)式表示,n為正整數(shù));

(2)設S1=a1﹣a2,S2=a3﹣a4,S3=a5﹣a6,……,S1008=a2015﹣a2016.求S1+S2+S3+……+S1008的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,點P是線段AD上一動點,OBD的中點,PO的延長線交BC于點Q。

(1)求證:OP=OQ;

(2)若AD=8cm,AB=6cm,P從點A出發(fā),以1cm/秒的速度向點D運動(不與點D重合),設點P運動時間為t秒,請用t表示PD的長;并求當t為何值時,四邊形PBQD是菱形。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如果100個乒乓球中有20個紅色的,那么在隨機抽出的20個乒乓球中(
A.剛好有4個紅球
B.紅球的數(shù)目多于4個
C.紅球的數(shù)目少于4個
D.以上都有可能

查看答案和解析>>

同步練習冊答案