【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+c經(jīng)過原點(diǎn),與x軸交于另一點(diǎn)A,對(duì)稱軸x=-2交x軸于點(diǎn)C,直線l過點(diǎn)N(0,-2),且與x軸平行,過點(diǎn)P作PM⊥l于點(diǎn)M,△AOB的面積為2.
(1)求拋物線的解析式;
(2)當(dāng)∠MPN=∠BAC時(shí),求P點(diǎn)坐標(biāo);
(3)①求證PM=PC;
②若點(diǎn)Q坐標(biāo)為(0,2),直接寫出PQ+PC的最小值.
【答案】(1);(2)點(diǎn)P坐標(biāo)為(,)或(,);(3)①見解析;②PQ+PC的最小值為4.
【解析】
(1)結(jié)合經(jīng)過原點(diǎn)以及頂點(diǎn)和坐標(biāo)軸進(jìn)行計(jì)算即可;(2)設(shè)P點(diǎn)坐標(biāo)為(x,),將P點(diǎn)在y軸左和右分類討論解答.(3)①過點(diǎn)P作PD⊥BC于點(diǎn)D,則PD=x+2,DC=,結(jié)合(2),在Rt△PCD中運(yùn)用勾股定理進(jìn)行計(jì)算即可證明;②由①知,PM=PC,當(dāng)Q、P、M三點(diǎn)共線時(shí), PQ+PC的最小值為PQ+PM的最小值,求出最小值即可.
解:(1)∵拋物線y=ax2+bx+c經(jīng)過原點(diǎn),且對(duì)稱軸為x=-2,
∴c=0,OA=4,又△AOB的面積為2,
∴BC=1,即頂點(diǎn)B的坐標(biāo)為(-2,-1),
∴,,解得a=,b=1,
∴拋物線的解析式為;
(2)∵BC=1,AC=2,
∴tan∠BAC=,設(shè)P點(diǎn)坐標(biāo)為(x,),如答圖1,當(dāng)點(diǎn)P在y軸右側(cè),PM=-(-2)=,MN=x,
∴tan∠MPN==,即,此方程無解;
如答圖2,當(dāng)點(diǎn)P在y軸左側(cè),此時(shí)PM=,MN=-x,
∴tan∠MPN==,即,解得,,則,,
∴點(diǎn)P坐標(biāo)為(,)或(,);
(3)①如答圖3,過點(diǎn)P作PD⊥BC于點(diǎn)D,則PD=x+2,DC=,
由(2)知PM=,在Rt△PCD中,
PC2===PM2,
∴PM=PC;
②由①知,PM=PC,
∴PQ+PC的最小值為PQ+PM的最小值,當(dāng)Q、P、M三點(diǎn)共線時(shí), PQ+PM=QM,
∵Q(0,2),
∴QM=QN=4,
∴ PQ+PC的最小值為4.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,反比例函數(shù)y=﹣在第二象限的圖象上有兩點(diǎn)A、B,它們的橫坐標(biāo)分別為﹣1、﹣2,在直線y=x上求一點(diǎn)P,使PA+PB最小.則P點(diǎn)坐標(biāo)為( 。
A. P(,)B. P(,)C. P(1,1)D. P(,)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】綜合與探究
如圖,拋物線y=﹣x2+2x+6與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,其對(duì)稱軸與拋物線交于點(diǎn)D.與x軸交于點(diǎn)E.
(1)求點(diǎn)A,B,D的坐標(biāo);
(2)點(diǎn)G為拋物線對(duì)稱軸上的一個(gè)動(dòng)點(diǎn),從點(diǎn)D出發(fā),沿直線DE以每秒2個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng),過點(diǎn)C作x軸的平行線交拋物線于M,N兩點(diǎn)(點(diǎn)M在點(diǎn)N的左邊).
設(shè)點(diǎn)G的運(yùn)動(dòng)時(shí)間為ts.
①當(dāng)t為何值時(shí),以點(diǎn)M,N,B,E為頂點(diǎn)的四邊形是平行四邊形;
②連接BM,在點(diǎn)G運(yùn)動(dòng)的過程中,是否存在點(diǎn)M.使得∠MBD=∠EDB,若存在,求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說明理由;
(3)點(diǎn)Q為坐標(biāo)平面內(nèi)一點(diǎn),以線段MN為對(duì)角線作萎形MENQ,當(dāng)菱形MENQ為正方形時(shí),請(qǐng)直接寫出t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(10分)如圖1,在Rt△ABC中,∠B=90°,BC=2AB=8,點(diǎn)D,E分別是邊BC,AC的中點(diǎn),連接DE. 將△EDC繞點(diǎn)C按順時(shí)針方向旋轉(zhuǎn),記旋轉(zhuǎn)角為α.
(1)問題發(fā)現(xiàn)
① 當(dāng)時(shí),;② 當(dāng)時(shí),
(2)拓展探究
試判斷:當(dāng)0°≤α<360°時(shí),的大小有無變化?請(qǐng)僅就圖2的情況給出證明.
(3)問題解決
當(dāng)△EDC旋轉(zhuǎn)至A、D、E三點(diǎn)共線時(shí),直接寫出線段BD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解某次“小學(xué)生書法比賽”的成績(jī)情況,隨機(jī)抽取了30名學(xué)生的成績(jī)進(jìn)行統(tǒng)計(jì),并將統(tǒng)計(jì)情況繪成如圖所示的頻數(shù)分布直方圖,己知成績(jī)x(單位:分)均滿足“50≤x<100”,每組成績(jī)包含最小值,不包含最大值.根據(jù)圖中信息回答下列問題:
(1)圖中a的值為_____;若要繪制該樣本的扇形統(tǒng)計(jì)圖,則成績(jī)x在“70≤x<80”所對(duì)應(yīng)扇形的圓心角度數(shù)為__________;
(2)此次比賽共有300名學(xué)生參加,若將“x≥80”的成績(jī)記為“優(yōu)秀”,則獲得“優(yōu)秀“的學(xué)生大約有多少人?
(3)在這些抽查的樣本中,小明的成績(jī)?yōu)?/span>92分,若從成績(jī)?cè)凇?/span>50≤x<60”和“90≤x<100”的學(xué)生中任選2人,請(qǐng)用列表或畫樹狀圖的方法,求小明被選中的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場(chǎng)購(gòu)進(jìn)甲、乙兩種商品,甲種商品共用了2000元,乙種商品共用了2400元已知乙種商品每件進(jìn)價(jià)比甲種商品每件進(jìn)價(jià)多8元,且購(gòu)進(jìn)的甲、乙兩種商品件數(shù)相同.
求甲、乙兩種商品的每件進(jìn)價(jià);
該商場(chǎng)將購(gòu)進(jìn)的甲、乙兩種商品進(jìn)行銷售,甲種商品的銷售單價(jià)為60元,乙種商品的銷售單價(jià)為88元,銷售過程中發(fā)現(xiàn)甲種商品銷量不好,商場(chǎng)決定:甲種商品銷售一定數(shù)量后,將剩余的甲種商品按原銷售單價(jià)的七折銷售;乙種商品銷售單價(jià)保持不變要使兩種商品全部售完后共獲利不少于2460元,問甲種商品按原銷售單價(jià)至少銷售多少件?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于二次函數(shù)y=ax2-(2a-1)x+a-1(a≠0),有下列結(jié)論:①其圖象與x軸一定相交;②若a<0,函數(shù)在x>1時(shí),y隨x的增大而減。虎蹮o論a取何值,拋物線的頂點(diǎn)始終在同一條直線上;④無論a取何值,函數(shù)圖象都經(jīng)過同一個(gè)點(diǎn).其中正確結(jié)論的個(gè)數(shù)是( )
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校開發(fā)了“書畫、器樂、戲曲、棋類”四大類興趣課程.為了解全校學(xué)生對(duì)每類課程的選擇情況,隨機(jī)抽取了若干名學(xué)生進(jìn)行調(diào)查(每人必選且只能選一類),先將調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計(jì)圖:
(1)本次隨機(jī)調(diào)查了多少名學(xué)生?
(2)補(bǔ)全條形統(tǒng)計(jì)圖中“書畫”、“戲曲”的空缺部分;
(3)若該校共有名學(xué)生,請(qǐng)估計(jì)全校學(xué)生選擇“戲曲”類的人數(shù);
(4)學(xué)校從這四類課程中隨機(jī)抽取兩類參加“全市青少年才藝展示活動(dòng)”,用樹形圖或列表法求處恰好抽到“器樂”和“戲曲”類的概率.(書畫、器樂、戲曲、棋類可分別用字幕表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖數(shù)軸的A、B、C三點(diǎn)所表示的數(shù)分別為a、b、c.若|a﹣b|=3,|b﹣c|=5,且原點(diǎn)O與A、B的距離分別為4、1,則關(guān)于O的位置,下列敘述何者正確?( 。
A. 在A的左邊 B. 介于A、B之間 C. 介于B、C之間 D. 在C的右邊
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com