已知:如圖,?ABCD中,BD是對角線,AE⊥BD于E,CF⊥BD于F.求證:BE=DF.

【答案】分析:要證BE=DF,可由△ABE≌△CDF來證.根據(jù)平行四邊形的性質和三角形全等的判定定理,很容易確定AAS,進而確定三角形全等.
解答:證明:∵四邊形ABCD是平行四邊形,
∴AB=CD.
∵AB∥CD,
∴∠ABE=∠CDF.
又∵AE⊥BD,CF⊥BD,
∴∠AEB=∠CFD=90°.
∴△ABE≌△CDF.
∴BE=DF.
點評:本題重點考查了平行四邊形的性質和三角形全等的判定定理,是一道較為簡單的題目.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

17、已知,如圖,△ABC中,∠BAC=90°,AD⊥BC于點D,BE平分∠ABC,交AD于點M,AN平分∠DAC,交BC于點N.
求證:四邊形AMNE是菱形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,∠ABC、∠ACB 的平分線相交于點F,過F作DE∥BC于D,交AC 于E,且AB=6,AC=5,求三角形ADE的周長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,△ABC是等邊三角形,點D在AB上,點E在AC的延長線上,且BD=CE,DE交BC于F,求證:BF=CF+CE.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,△ABC中,AB=AC=10,BC=16,點D在BC上,DA⊥CA于A.
求:BD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,△ABC中,AD⊥BC,BD=DE,點E在AC的垂直平分線上.
(1)請問:AB、BD、DC有何數(shù)量關系?并說明理由.
(2)如果∠B=60°,請問BD和DC有何數(shù)量關系?并說明理由.

查看答案和解析>>

同步練習冊答案