B
分析:連接AD、BE,求出弧BD=弧CE,推出∠BAD=∠EBC,推出∠CAB=∠ABD+∠ABE,求出∠CAB=∠ABD+∠ACE,根據(jù)角平分線性質(zhì)求出∠ABC+∠ACB=2∠CAB,根據(jù)三角形的內(nèi)角和定理得出3∠CAB=180°,求出即可.
解答:連接AD、BE,
![](http://thumb.zyjl.cn/pic5/upload/201304/51d664533a0ab.png)
∵BD=CE
∴弧BD=弧CE,∴∠BAD=∠EBC,
∵∠BAD=∠CAD+∠CAB,∠EBC=∠ABE+∠ABD+∠CBD,
∴∠CAD+∠CAB=∠ABE+∠ABD+∠CBD,
∵∠CAD=∠CBD(同圓中,同弧所對的圓周角相等),
∴∠CAB=∠ABD+∠ABE,
∵∠ABE=∠ACE(同圓中,同弧所對的圓周角相等),
∴∠CAB=∠ABD+∠ACE(等量代換)
∵BD、CE分別平分∠ABC、∠ACB,
∴∠ABD=
![](http://thumb.zyjl.cn/pic5/latex/13.png)
∠ABC,∠ACE=
![](http://thumb.zyjl.cn/pic5/latex/13.png)
∠ACB
∴∠CAB=
![](http://thumb.zyjl.cn/pic5/latex/13.png)
(∠ABC+∠ACB)
∴∠ABC+∠ACB=2∠CAB
∵∠CAB+∠ABC+∠ACB=180°,
∴∠CAB+2∠CAB=180°,
3∠CAB=180°
∴∠CAB=60°.
故選C.
點(diǎn)評:本題考查了三角形的內(nèi)角和定理,三角形的外接圓與外心,圓周角定理,圓心角、弧、弦之間的關(guān)系等知識點(diǎn),主要考查學(xué)生運(yùn)用定理進(jìn)行推理的能力,題目綜合性比較強(qiáng),有一定的難度.