【題目】小明和小麗想利用摸球游戲來決定誰去參加學校舉辦的歌詠比賽,游戲規(guī)則是:在一個不透明的袋子里裝有除數(shù)字以外其他均相同的4個小球,上面分別標有數(shù)字1、23、4.一人先從袋中隨機摸出一個小球,另一人再從袋中剩下的3個小球中隨機摸出一個小球.若摸出的兩個小球上的數(shù)字和奇數(shù),則小明去參賽;否則小麗去參賽.

(1)用樹狀圖或列表法求出小明參賽的概率;

(2)你認為這個游戲公平嗎?請說明理由.

【答案】(1);(2)不公平.

【解析】

1)先根據(jù)題意畫出樹狀圖,求出所有可能結果,再求出兩個小球上的數(shù)字和為奇數(shù)的結果,即可求出求出小明獲勝的概率;

2)根據(jù)概率公式分別求出小明獲勝的概率和小亮獲勝的概率,即可判斷出這個游戲是否公平.

(1)根據(jù)題意可列樹狀圖如下:

從表或樹狀圖可以看出所有可能結果共有12種,且每種結果發(fā)生的可能性相同,符合條件的結果有8種,

(和為奇數(shù));

(2)不公平,理由如下:

∵小明參賽的概率是(和為奇數(shù)),小麗參賽的概率是(和為偶數(shù))

,

∴不公平.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知在RtABC中,ABAC3,在△ABC內(nèi)作第一個內(nèi)接正方形DEFG;然后取GF的中點P,連接PD、PE,在△PDE內(nèi)作第二個內(nèi)接正方形HIKJ;再取線段KJ的中點Q,在△QHI內(nèi)作第三個內(nèi)接正方形依次進行下去,則第2014個內(nèi)接正方形的邊長為____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB、CD為⊙O的直徑,弦AECD,連接BECD于點F,過點E作直線EPCD的延長線交于點P,使∠PED=C.

(1)求證:PE是⊙O的切線;

(2)求證:ED平分∠BEP.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,反比例函數(shù)(x>0)與正比例函數(shù)y=kx、 (k>1)的圖象分別交于點A、B,若∠AOB=45°,則AOB的面積是________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線AB和拋物線的交點是A(0,-3)B(5,9),已知拋物線的頂點D的橫坐標是2.

(1)求拋物線的解析式及頂點坐標;

(2)軸上是否存在一點C,與AB組成等腰三角形?若存在,求出點C的坐標,若不存在,請說明理由;

(3)在直線AB的下方拋物線上找一點P,連接PA,PB使得△PAB的面積最大,并求出這個最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知函數(shù)yx+2的圖象與函數(shù)yk≠0)的圖象交于A、B兩點,連接BO并延長交函數(shù)yk≠0)的圖象于點C,連接AC,若ABC的面積為8.則k的值為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠C=90°,以AC為直徑作⊙O,交ABD,過點OOEAB,交BCE.

(1)求證:ED為⊙O的切線;

(2)如果⊙O的半徑為,ED=2,延長EO交⊙OF,連接DF、AF,求ADF的面積.

【答案】(1)證明見解析;(2)

【解析】試題分析:(1)首先連接OD,由OEAB,根據(jù)平行線與等腰三角形的性質(zhì),易證得 即可得,則可證得的切線;
(2)連接CD,根據(jù)直徑所對的圓周角是直角,即可得 利用勾股定理即可求得的長,又由OEAB,證得根據(jù)相似三角形的對應邊成比例,即可求得的長,然后利用三角函數(shù)的知識,求得的長,然后利用SADF=S梯形ABEF-S梯形DBEF求得答案.

試題解析:(1)證明:連接OD,

OEAB,

∴∠COE=CADEOD=ODA,

OA=OD,

∴∠OAD=ODA

∴∠COE=DOE,

在△COE和△DOE中,

∴△COE≌△DOE(SAS),

EDOD

ED的切線;

(2)連接CD,交OEM,

RtODE中,

OD=32,DE=2,

OEAB,

∴△COE∽△CAB,

AB=5,

AC是直徑,

EFAB,

SADF=S梯形ABEFS梯形DBEF

∴△ADF的面積為

型】解答
束】
25

【題目】【題目】已知,拋物線y=ax2+ax+b(a≠0)與直線y=2x+m有一個公共點M(1,0),且a<b.

(1)求ba的關系式和拋物線的頂點D坐標(用a的代數(shù)式表示);

(2)直線與拋物線的另外一個交點記為N,求DMN的面積與a的關系式;

(3)a=﹣1時,直線y=﹣2x與拋物線在第二象限交于點G,點G、H關于原點對稱,現(xiàn)將線段GH沿y軸向上平移t個單位(t>0),若線段GH與拋物線有兩個不同的公共點,試求t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在邊長均為1的正方形網(wǎng)格紙上有,頂點AB,C,D、E、F均在格點上,如果是由繞著某點O旋轉(zhuǎn)得到的,點的對應點是點D,點C的對應點是點請按要求完成以下操作或運算:

在圖上找到點O的位置不寫作法,但要標出字母,并寫出點O的坐標;

求點B繞著點O順時針旋轉(zhuǎn)到點E所經(jīng)過的路徑長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在矩形ABCD中,AB=6cmBC=12cm,點P從點A出發(fā),沿AB邊向點B以每秒1cm的速度移動,同時點Q從點B出發(fā)沿BC邊向點C以每秒2cm的速度移動P、Q兩點在分別到達B、C兩點后就停止移動,設兩點移動的時間為t秒,回答下列問題:

1)如圖1,當t為幾秒時,PBQ的面積等于5cm2?

2)如圖2,當t=秒時,試判斷DPQ的形狀,并說明理由;

3)如圖3,以Q為圓心,PQ為半徑作⊙Q

①在運動過程中,是否存在這樣的t值,使⊙Q正好與四邊形DPQC的一邊(或邊所在的直線)相切?若存在,求出t值;若不存在,請說明理由;

②若⊙Q與四邊形DPQC有三個公共點,請直接寫出t的取值范圍。

查看答案和解析>>

同步練習冊答案