(2007•日照)如圖,在Rt△ABC中,∠ACB=90°,以AC為直徑的⊙O與AB邊交于點(diǎn)D,過(guò)點(diǎn)D作⊙O的切線,交BC于點(diǎn)E.
(1)求證:點(diǎn)E是邊BC的中點(diǎn);
(2)若EC=3,BD=,求⊙O的直徑AC的長(zhǎng)度;
(3)若以點(diǎn)O,D,E,C為頂點(diǎn)的四邊形是正方形,試判斷△ABC的形狀,并說(shuō)明理由.

【答案】分析:(1)利用EC為⊙O的切線,ED也為⊙O的切線可求EC=ED,再求得EB=EC,EB=ED可知點(diǎn)E是邊BC的中點(diǎn);
(2)解答此題需要運(yùn)用圓切線和割線的性質(zhì)和勾股定理求解;
(3)判定△ABC是等腰直角三角形時(shí)要用到正方形的性質(zhì)來(lái)求得相等的邊.
解答:(1)證明:連接DO;
∵∠ACB=90°,AC為直徑,
∴EC為⊙O的切線;
又∵ED也為⊙O的切線,
∴EC=ED,
又∵∠EDO=90°,
∴∠BDE+∠ADO=90°,
∴∠BDE+∠A=90°
又∵∠B+∠A=90°,
∴∠BDE=∠B,
∴EB=ED,
∴EB=EC,即點(diǎn)E是邊BC的中點(diǎn);

(2)解:∵BC,BA分別是⊙O的切線和割線,
∴BC2=BD•BA,
∴(2EC)2=BD•BA,即BA•2=36,
∴BA=3,
在Rt△ABC中,由勾股定理得
AC===3

(3)解:△ABC是等腰直角三角形.
理由:∵四邊形ODEC為正方形,
∴∠DOC=∠ACB=90°,即DO∥BC,
又∵點(diǎn)E是邊BC的中點(diǎn),
∴BC=2OD=AC,
∴△ABC是等腰直角三角形.
點(diǎn)評(píng):本題考查了圓的切線性質(zhì),及解直角三角形的知識(shí).運(yùn)用切線的性質(zhì)來(lái)進(jìn)行計(jì)算或論證,常通過(guò)作輔助線連接圓心和切點(diǎn),利用垂直構(gòu)造直角三角形解決有關(guān)問(wèn)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2003年全國(guó)中考數(shù)學(xué)試題匯編《圖形的平移》(01)(解析版) 題型:解答題

(2007•日照)如圖,直線EF將矩形紙片ABCD分成面積相等的兩部分,E、F分別與BC交于點(diǎn)E,與AD交于點(diǎn)F(E,F(xiàn)不與頂點(diǎn)重合),設(shè)AB=a,AD=b,BE=x.
(Ⅰ)求證:AF=EC;
(Ⅱ)用剪刀將紙片沿直線EF剪開(kāi)后,再將紙片ABEF沿AB對(duì)稱(chēng)翻折,然后平移拼接在梯形ECDF的下方,使一底邊重合,直腰落在邊DC的延長(zhǎng)線上,拼接后,下方的梯形記作EE′B′C.
(1)求出直線EE′分別經(jīng)過(guò)原矩形的頂點(diǎn)A和頂點(diǎn)D時(shí),所對(duì)應(yīng)的x:b的值;
(2)在直線EE′經(jīng)過(guò)原矩形的一個(gè)頂點(diǎn)的情形下,連接BE′,直線BE′與EF是否平行?你若認(rèn)為平行,請(qǐng)給予證明;你若認(rèn)為不平行,請(qǐng)你說(shuō)明當(dāng)a與b滿足什么關(guān)系時(shí),它們垂直?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2007年全國(guó)中考數(shù)學(xué)試題匯編《圖形的平移》(02)(解析版) 題型:解答題

(2007•日照)如圖,直線EF將矩形紙片ABCD分成面積相等的兩部分,E、F分別與BC交于點(diǎn)E,與AD交于點(diǎn)F(E,F(xiàn)不與頂點(diǎn)重合),設(shè)AB=a,AD=b,BE=x.
(Ⅰ)求證:AF=EC;
(Ⅱ)用剪刀將紙片沿直線EF剪開(kāi)后,再將紙片ABEF沿AB對(duì)稱(chēng)翻折,然后平移拼接在梯形ECDF的下方,使一底邊重合,直腰落在邊DC的延長(zhǎng)線上,拼接后,下方的梯形記作EE′B′C.
(1)求出直線EE′分別經(jīng)過(guò)原矩形的頂點(diǎn)A和頂點(diǎn)D時(shí),所對(duì)應(yīng)的x:b的值;
(2)在直線EE′經(jīng)過(guò)原矩形的一個(gè)頂點(diǎn)的情形下,連接BE′,直線BE′與EF是否平行?你若認(rèn)為平行,請(qǐng)給予證明;你若認(rèn)為不平行,請(qǐng)你說(shuō)明當(dāng)a與b滿足什么關(guān)系時(shí),它們垂直?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2007年全國(guó)中考數(shù)學(xué)試題匯編《圓》(07)(解析版) 題型:填空題

(2007•日照)如圖,AC⊥BC于點(diǎn)C,BC=a,CA=b,AB=c,⊙O與直線AB、BC、CA都相切,則⊙O的半徑等于   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2007年山東省日照市中考數(shù)學(xué)試卷(解析版) 題型:選擇題

(2007•日照)如圖,在周長(zhǎng)為20cm的?ABCD中,AB≠AD,AC、BD相交于點(diǎn)O,OE⊥BD交AD于E,則△ABE的周長(zhǎng)為( )

A.4cm
B.6cm
C.8cm
D.10cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2003年江西省中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2007•日照)如圖,直線EF將矩形紙片ABCD分成面積相等的兩部分,E、F分別與BC交于點(diǎn)E,與AD交于點(diǎn)F(E,F(xiàn)不與頂點(diǎn)重合),設(shè)AB=a,AD=b,BE=x.
(Ⅰ)求證:AF=EC;
(Ⅱ)用剪刀將紙片沿直線EF剪開(kāi)后,再將紙片ABEF沿AB對(duì)稱(chēng)翻折,然后平移拼接在梯形ECDF的下方,使一底邊重合,直腰落在邊DC的延長(zhǎng)線上,拼接后,下方的梯形記作EE′B′C.
(1)求出直線EE′分別經(jīng)過(guò)原矩形的頂點(diǎn)A和頂點(diǎn)D時(shí),所對(duì)應(yīng)的x:b的值;
(2)在直線EE′經(jīng)過(guò)原矩形的一個(gè)頂點(diǎn)的情形下,連接BE′,直線BE′與EF是否平行?你若認(rèn)為平行,請(qǐng)給予證明;你若認(rèn)為不平行,請(qǐng)你說(shuō)明當(dāng)a與b滿足什么關(guān)系時(shí),它們垂直?

查看答案和解析>>

同步練習(xí)冊(cè)答案