【題目】如圖,A,B兩地有公路和鐵路相連,在這條路上有一家食品廠,它到B地的距離是到A地的2倍,這家工廠從A地購買原料,制成食品賣到B地.已知公路運價為1.5元/(公里噸),鐵路運價為1元/(公里噸),這兩次運輸(第一次:A地→食品廠,第二次:食品廠→B地)共支出公路運費15600元,鐵路運費20600元.

問:
(1)這家食品廠到A地的距離是多少?
(2)這家食品廠此次共買進原料和賣出食品各多少噸?

【答案】
(1)解:這家食品廠到A地的距離是x,這家食品廠到B地的距離是y,

可得:

解得: ,


(2)解:這家食品廠此次共買進原料和賣出食品各m,n噸,

可得:

解得: ,

答:這家食品廠此次共買進原料和賣出食品各220,200噸.


【解析】(1)這家食品廠到A地的距離是x,這家食品廠到B地的距離是y,然后依據(jù)它到B地的距離是到A地的2倍,以及AB之間的距離為150列方程求解即可;
(2)設(shè)這家食品廠此次共買進原料和賣出食品各m,n噸,然后依據(jù)共支出公路運費15600元,鐵路運費20600元列出關(guān)于m、n的二元一次方程組求解即可.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點A從原點出發(fā)沿數(shù)軸向左運動,同時,點B也從原點出發(fā)沿數(shù)軸向右運動,4秒后,兩點相距16個單位長度.已知點B的速度是點A的速度的3倍(速度單位:單位長度/秒).
(1)求出點A、點B運動的速度,并在數(shù)軸上標出A、B兩點從原點出發(fā)運動4秒時的位置;
(2)若A、B兩點從(1)中的位置開始,仍以原來的速度同時沿數(shù)軸向左運動,再過幾秒時,原點恰好處在AB的中點?
(3)若A、B兩點從(1)中的位置開始,仍以原來的速度同時沿數(shù)軸向左運動時,另一點C同時從原點O位置出發(fā)向B點運動,且C的速度是點A的速度的一半;當點C運動幾秒時,C為AB的中點?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】α與β的兩邊分別平行,且α =(x+10)°,β =(2x-25)°,則α的度數(shù)為(

A.45° B.75° C.45°或75° D.45°或55°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,D、E分別在AC、AB邊上,且BC=BD,AD=DE=EB,求∠A的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】圖①是我們常見的地磚上的圖案,其中包含了一種特殊的平面圖形﹣正八邊形.

(1)如圖②,AE是⊙O的直徑,用直尺和圓規(guī)作⊙O的內(nèi)接正八邊形ABCDEFGH(不寫作法,保留作圖痕跡);

(2)在(1)的前提下,連接OD,已知OA=5,若扇形OAD(∠AOD<180°)是一個圓錐的側(cè)面,則這個圓錐底面圓的半徑等于

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算:m6m3的結(jié)果(
A.m18
B.m9
C.m3
D.m2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在等邊三角形ABC中,BC=6cm.射線AG∥BC,點E從點A出發(fā)沿射線AG以1cm/s的速度運動,同時點F從點B出發(fā)沿射線BC以2cm/s的速度運動,設(shè)運動時間為t(s).
(1)連接EF,當EF經(jīng)過AC邊的中點D時,求證:△ADE≌△CDF;
(2)填空: ①當t為s時,四邊形ACFE是菱形;
②當t為s時,以A、F、C、E為頂點的四邊形是直角梯形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,△ABC中, BD平分∠ABC , 且與△ABC的外角∠ACE的角平分線交于點D

(1)若 , ,求∠D的度數(shù);
(2)若把∠A截去,得到四邊形MNCB , 如圖②,猜想∠D、∠M、∠N的關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形紙片ABCD中,已知AD=8,折疊紙片,使AB邊與對角線AC重合,點B落在點F處,折痕為AE,且EF=3,則AB的長為( )

A.3
B.4
C.5
D.6

查看答案和解析>>

同步練習冊答案